Batmanghelich NK, Saeedi A, Cho MH, San Jose Estépar R, Golland P.
Generative Method to Discover Genetically Driven Image Biomarkers. Information processing in medical imaging : proceedings of the .. conferenceInformation processing in medical imaging : proceedings of the .. conference 2015;24:30-42.
Abstract
Abstract. We present a generative probabilistic approach to discovery of disease subtypes determined by the genetic variants. In many diseases, multiple types of pathology may present simultaneously in a patient, making quantification of the disease challenging. Our method seeks com- mon co-occurring image and genetic patterns in a population as a way to model these two different data types jointly. We assume that each patient is a mixture of multiple disease subtypes and use the joint gen- erative model of image and genetic markers to identify disease subtypes guided by known genetic influences. Our model is based on a variant of the so-called topic models that uncover the latent structure in a collection of data. We derive an efficient variational inference algorithm to extract patterns of co-occurrence and to quantify the presence of heterogeneous disease processes in each patient. We evaluate the method on simulated data and illustrate its use in the context of Chronic Obstructive Pul- monary Disease (COPD) to characterize the relationship between image and genetic signatures of COPD subtypes in a large patient cohort.
Paper Cho MH, Castaldi PJ, Hersh CP, Hobbs BD, Barr GR, Tal-Singer R, Bakke P, Gulsvik A, San Jose Estépar R, van Beek EJR, Coxson HO, Lynch DA, Washko GR, Laird NM, Crapo JD, Beaty TH, Silverman EK.
A Genome-wide Association Study of Emphysema and Airway Quantitative Imaging Phenotypes. American journal of respiratory and critical care medicineAmerican journal of respiratory and critical care medicine 2015;
AbstractRATIONALE:Chronic obstructive pulmonary disease (COPD) is defined by the presence of airflow limitation on spirometry, yet COPD subjects can have marked differences in CT imaging. These differences may be driven by genetic factors. We hypothesized that a genome-wide association study of quantitative imaging would identify loci not previously identified in analyses of COPD or spirometry. In addition, we sought to determine whether previously described genome-wide significant COPD and spirometric loci were associated with emphysema or airway phenotypes.OBJECTIVE:To identify genetic determinants of quantitative imaging phenotypes.METHODS:We performed a genome-wide association study on two quantitative emphysema and two quantitative airway imaging phenotypes in the COPDGene (non-Hispanic white and African-American), ECLIPSE, NETT, and GenKOLS studies; and on % gas trapping in COPDGene. We also examined specific loci reported as genome-wide significant for spirometric phenotypes related to airflow limitation or COPD.RESULTS:The total sample size across all cohorts was 12,031, of which 9,338 were from COPDGene. We identified five loci associated with emphysema-related phenotypes, one with airway-related phenotypes, and two with gas trapping. These loci included previously reported associations, including the HHIP, 15q25, and AGER loci, as well as novel associations near SERPINA10 and DLC1. All previously reported COPD and a significant number of spirometric GWAS loci were at least nominally (P < 0.05) associated with either emphysema or airway phenotypes.CONCLUSIONS:Genome-wide analysis may identify novel risk factors for quantitative imaging characteristics in COPD, and also identify imaging features associated with previously identified lung function loci. .
Paper Torrado-Carvajal A, Herraiz JL, Hernandez-Tamames JA, San Jose Estépar R, Eryaman Y, Rozenholc Y, Adalsteinsson E, Wald LL, Malpica N.
Multi-atlas and label fusion approach for patient-specific MRI based skull estimation. Magnetic Resonance in MedicineMagnetic Resonance in Medicine 2015;:n/a-n/a.
AbstractPURPOSE:MRI-based skull segmentation is a useful procedure for many imaging applications. This study describes a methodology for automatic segmentation of the complete skull from a single T1-weighted volume.METHODS:The skull is estimated using a multi-atlas segmentation approach. Using a whole head computed tomography (CT) scan database, the skull in a new MRI volume is detected by nonrigid image registration of the volume to every CT, and combination of the individual segmentations by label-fusion. We have compared Majority Voting, Simultaneous Truth and Performance Level Estimation (STAPLE), Shape Based Averaging (SBA), and the Selective and Iterative Method for Performance Level Estimation (SIMPLE) algorithms.RESULTS:The pipeline has been evaluated quantitatively using images from the Retrospective Image Registration Evaluation database (reaching an overlap of 72.46 ± 6.99%), a clinical CT-MR dataset (maximum overlap of 78.31 ± 6.97%), and a whole head CT-MRI pair (maximum overlap 78.68%). A qualitative evaluation has also been performed on MRI acquisition of volunteers.CONCLUSION:It is possible to automatically segment the complete skull from MRI data using a multi-atlas and label fusion approach. This will allow the creation of complete MRI-based tissue models that can be used in electromagnetic dosimetry applications and attenuation correction in PET/MR. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
Paper Samet J, Crowell R, San Jose Estépar R, McKee AB, Mulshine JL, Powe N, Rand C, Yung R.
Providing Guidance on Lung Cancer Screening to Patients and Physicians. American Lung Association; 2015.
Paper Wells MJ, Iyer AS, Rahaghi FN, Bhatt SP, Gupta H, Denney TS, Lloyd SG, Dell'Italia LJ, Nath H, San Jose Estépar R, Washko GR, Dransfield MT.
Pulmonary artery enlargement is associated with right ventricular dysfunction and loss of blood volume in small pulmonary vessels in chronic obstructive pulmonary disease. Circulation. Cardiovascular imagingCirculation. Cardiovascular imaging 2015;8
AbstractBACKGROUND:Chronic obstructive pulmonary disease causes significant morbidity and concomitant pulmonary vascular disease and cardiac dysfunction are associated with poor prognosis. Computed tomography-detected relative pulmonary artery (PA) enlargement defined as a PA to ascending aorta diameter ratio >1 (PA:A>1) is a marker for pulmonary hypertension and predicts chronic obstructive pulmonary disease exacerbations. However, little is known about the relationship between the PA:A ratio, pulmonary blood volume, and cardiac function.METHODS AND RESULTS:A single-center prospective cohort study of patients with chronic obstructive pulmonary disease was conducted. Clinical characteristics and computed tomography metrics, including the PA:A and pulmonary blood vessel volume, were measured. Ventricular functions, volumes, and dimensions were measured by cine cardiac MRI with 3-dimensional analysis. Linear regression examined the relationships between clinical characteristics, computed tomography and cardiac MRI metrics, and 6-minute walk distance. Twenty-four patients were evaluated and those with PA:A>1 had higher right ventricular (RV) end-diastolic and end-systolic volume indices accompanied by lower RV ejection fraction (52±7% versus 60±9%; P=0.04). The PA:A correlated inversely with total intraparenchymal pulmonary blood vessel volume and the volume of distal vessels with a cross-sectional area of <5 mm(2). Lower forced expiratory volume, PA:A>1, and hyperinflation correlated with reduced RV ejection fraction. Both PA diameter and reduced RV ejection fraction were independently associated with reduced 6-minute walk distance.CONCLUSIONS:The loss of blood volume in distal pulmonary vessels is associated with PA enlargement on computed tomography. Cardiac MRI detects early RV dysfunction and remodeling in nonsevere chronic obstructive pulmonary disease patients with a PA:A>1. Both RV dysfunction and PA enlargement are independently associated with reduced walk distance.CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT00608764.
Diaz AA, Rahaghi FN, Ross JC, Harmouche R, Tschirren J, San Jose Estépar R, Washko GR.
Understanding the contribution of native tracheobronchial structure to lung function: CT assessment of airway morphology in never smokers. Respiratory researchRespiratory research 2015;16:23.
AbstractBACKGROUND:Computed tomographic (CT) airway lumen narrowing is associated with lower lung function. Although volumetric CT measures of airways (wall volume [WV] and lumen volume [LV]) compared to cross sectional measures can more accurately reflect bronchial morphology, data of their use in never smokers is scarce. We hypothesize that native tracheobronchial tree morphology as assessed by volumetric CT metrics play a significant role in determining lung function in normal subjects. We aimed to assess the relationships between airway size, the projected branching generation number (BGN) to reach airways of <2mm lumen diameter -the site for airflow obstruction in smokers- and measures of lung function including forced expiratory volume in 1 second (FEV1) and forced expiratory flow between 25% and 75% of vital capacity (FEF 25-75).METHODS:We assessed WV and LV of segmental and subsegmental airways from six bronchial paths as well as lung volume on CT scans from 106 never smokers. We calculated the lumen area ratio of the subsegmental to segmental airways and estimated the projected BGN to reach a <2mm-lumen-diameter airway assuming a dichotomized tracheobronchial tree model. Regression analysis was used to assess the relationships between airway size, BGN, FEF 25-75, and FEV1.RESULTS:We found that in models adjusted for demographics, LV and WV of segmental and subsegmental airways were directly related to FEV1 (P <0.05 for all the models). In adjusted models for age, sex, race, LV and lung volume or height, the projected BGN was directly associated with FEF 25-75 and FEV1 (P=0.001) where subjects with lower FEV1 had fewer calculated branch generations between the subsegmental bronchus and small airways. There was no association between airway lumen area ratio and lung volume.CONCLUSION:We conclude that in never smokers, those with smaller central airways had lower airflow and those with lower airflow had less parallel airway pathways independent of lung size. These findings suggest that variability in the structure of the tracheobronchial tree may influence the risk of developing clinically relevant smoking related airway obstruction.
Paper Castaldi PJ, Cho MH, Zhou X, Qiu W, McGeachie M, Celli B, Bakke P, Gulsvik A, Lomas DA, Crapo JD, Beaty TH, Rennard S, Harshfield B, Lange C, Singh D, Tal-Singer R, Riley JH, Quackenbush J, Raby BA, Carey VJ, Silverman EK, Hersh CP.
Genetic control of gene expression at novel and established chronic obstructive pulmonary disease loci. Hum Mol Genet 2015;24(4):1200-10.
AbstractGenetic risk loci have been identified for a wide range of diseases through genome-wide association studies (GWAS), but the relevant functional mechanisms have been identified for only a small proportion of these GWAS-identified loci. By integrating results from the largest current GWAS of chronic obstructive disease (COPD) with expression quantitative trait locus (eQTL) analysis in whole blood and sputum from 121 subjects with COPD from the ECLIPSE Study, this analysis identifies loci that are simultaneously associated with COPD and the expression of nearby genes (COPD eQTLs). After integrative analysis, 19 COPD eQTLs were identified, including all four previously identified genome-wide significant loci near HHIP, FAM13A, and the 15q25 and 19q13 loci. For each COPD eQTL, fine mapping and colocalization analysis to identify causal shared eQTL and GWAS variants identified a subset of sites with moderate-to-strong evidence of harboring at least one shared variant responsible for both the eQTL and GWAS signals. Transcription factor binding site (TFBS) analysis confirms that multiple COPD eQTL lead SNPs disrupt TFBS, and enhancer enrichment analysis for loci with the strongest colocalization signals showed enrichment for blood-related cell types (CD3 and CD4+ T cells, lymphoblastoid cell lines). In summary, integrative eQTL and GWAS analysis confirms that genetic control of gene expression plays a key role in the genetic architecture of COPD and identifies specific blood-related cell types as likely participants in the functional pathway from GWAS-associated variant to disease phenotype.
Kalhan R, Cuttica MJ, Colangelo LA, Shah SJ, Lima J, Kishi S, Arynchyn A, Jacobs DR, Thyagarajan B, Liu K, Lloyd-Jones D.
Loss of Lung Health from Young Adulthood and Cardiac Phenotypes in Middle Age. Am J Respir Crit Care Med 2015;192(1):76-85.
AbstractRATIONALE: Chronic lung diseases are associated with cardiovascular disease. How these associations evolve from young adulthood forward is unknown. Understanding the preclinical history of these associations could inform prevention strategies for common heart-lung conditions. OBJECTIVES: To use the Coronary Artery Risk Development in Young Adults (CARDIA) study to explore the development of heart-lung interactions. METHODS: We analyzed cardiac structural and functional measurements determined by echocardiography at Year 25 of CARDIA and measures of pulmonary function over 20 years in 3,000 participants. MEASUREMENTS AND MAIN RESULTS: Decline in FVC from peak was associated with larger left ventricular mass (β = 6.05 g per SD of FVC decline; P < 0.0001) and greater cardiac output (β = 0.109 L/min per SD of FVC decline; P = 0.001). Decline in FEV1/FVC ratio was associated with smaller left atrial internal dimension (β = -0.038 cm per SD FEV1/FVC decline; P < 0.0001) and lower cardiac output (β = -0.070 L/min per SD of FEV1/FVC decline; P = 0.03). Decline in FVC was associated with diastolic dysfunction (odds ratio, 3.39; 95% confidence interval, 1.37-8.36; P = 0.006). CONCLUSIONS: Patterns of loss of lung health are associated with specific cardiovascular phenotypes in middle age. Decline in FEV1/FVC ratio is associated with underfilling of the left heart and low cardiac output. Decline in FVC with preserved FEV1/FVC ratio is associated with left ventricular hypertrophy and diastolic dysfunction. Cardiopulmonary interactions apparent with common complex heart and lung diseases evolve concurrently from early adulthood forward.
Wells MJ, Iyer AS, Rahaghi FN, Bhatt SP, Gupta H, Denney TS, Lloyd SG, Dell'Italia LJ, Nath H, Estepar RSJ, Washko GR, Dransfield MT.
Pulmonary artery enlargement is associated with right ventricular dysfunction and loss of blood volume in small pulmonary vessels in chronic obstructive pulmonary disease. Circ Cardiovasc Imaging 2015;8(4)
AbstractBACKGROUND: Chronic obstructive pulmonary disease causes significant morbidity and concomitant pulmonary vascular disease and cardiac dysfunction are associated with poor prognosis. Computed tomography-detected relative pulmonary artery (PA) enlargement defined as a PA to ascending aorta diameter ratio >1 (PA:A>1) is a marker for pulmonary hypertension and predicts chronic obstructive pulmonary disease exacerbations. However, little is known about the relationship between the PA:A ratio, pulmonary blood volume, and cardiac function.
METHODS AND RESULTS: A single-center prospective cohort study of patients with chronic obstructive pulmonary disease was conducted. Clinical characteristics and computed tomography metrics, including the PA:A and pulmonary blood vessel volume, were measured. Ventricular functions, volumes, and dimensions were measured by cine cardiac MRI with 3-dimensional analysis. Linear regression examined the relationships between clinical characteristics, computed tomography and cardiac MRI metrics, and 6-minute walk distance. Twenty-four patients were evaluated and those with PA:A>1 had higher right ventricular (RV) end-diastolic and end-systolic volume indices accompanied by lower RV ejection fraction (52±7% versus 60±9%; P=0.04). The PA:A correlated inversely with total intraparenchymal pulmonary blood vessel volume and the volume of distal vessels with a cross-sectional area of <5 mm(2). Lower forced expiratory volume, PA:A>1, and hyperinflation correlated with reduced RV ejection fraction. Both PA diameter and reduced RV ejection fraction were independently associated with reduced 6-minute walk distance.
CONCLUSIONS: The loss of blood volume in distal pulmonary vessels is associated with PA enlargement on computed tomography. Cardiac MRI detects early RV dysfunction and remodeling in nonsevere chronic obstructive pulmonary disease patients with a PA:A>1. Both RV dysfunction and PA enlargement are independently associated with reduced walk distance.
CLINICAL TRIAL REGISTRATION: URL:
http://www.clinicaltrials.gov. Unique identifier: NCT00608764.