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Purpose: MRI-based skull segmentation is a useful procedure
for many imaging applications. This study describes a meth-
odology for automatic segmentation of the complete skull
from a single T1-weighted volume.
Methods: The skull is estimated using a multi-atlas segmenta-
tion approach. Using a whole head computed tomography
(CT) scan database, the skull in a new MRI volume is detected
by nonrigid image registration of the volume to every CT, and
combination of the individual segmentations by label-fusion.
We have compared Majority Voting, Simultaneous Truth and
Performance Level Estimation (STAPLE), Shape Based Averag-
ing (SBA), and the Selective and Iterative Method for Perform-
ance Level Estimation (SIMPLE) algorithms.
Results: The pipeline has been evaluated quantitatively using
images from the Retrospective Image Registration Evaluation
database (reaching an overlap of 72.46 6 6.99%), a clinical
CT-MR dataset (maximum overlap of 78.31 6 6.97%), and a
whole head CT-MRI pair (maximum overlap 78.68%). A quali-
tative evaluation has also been performed on MRI acquisition
of volunteers.
Conclusion: It is possible to automatically segment the com-
plete skull from MRI data using a multi-atlas and label fusion
approach. This will allow the creation of complete MRI-based
tissue models that can be used in electromagnetic dosimetry

applications and attenuation correction in PET/MR. Magn
Reson Med 000:000–000, 2015. VC 2015 Wiley Periodicals,
Inc.
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INTRODUCTION

Skull segmentation from MRI data is receiving a lot of
attention, as there are many applications in which a pre-
cise delineation of the skull is needed, in addition to
soft tissues. Accurate construction of patient-specific tis-
sue models for dosimetry applications in electromag-
netics (EM) (1,2), medical radiation physics (3), or the
use of tissue information for attenuation correction in
positron emission tomography (PET)/MR (4–6) are three
of the most important examples. Treating bone as soft
tissue or ignoring it in those applications is known to
cause a distorted and biased distribution in the final esti-
mation maps: B1þ field, specific absorption rate (SAR),
standardized uptake value (SUV) distribution.

Most common approaches to patient-specific model
creation are based on a combination of MRI and com-
puted tomography (CT) images of the subject (7). Figure
1 shows how the MRI allows to better differentiate
between soft tissues and to establish their boundaries,
while CT provides the bone tissue information.

The use of only MRI instead of MRIþCT has the
advantage of reducing radiation dose to subjects,
decreasing costs and acquisition time, while allowing
detailed information of soft tissues. It will also allow
more complete (bigger field of view with respect to CT)
and repeated skull imaging of the patient. Nevertheless,
MRI-based bone segmentation, specifically automatic
segmentation of the skull, is a challenging task. On one
hand, bone tissue and air both present low signal inten-
sity on MR images, making it difficult to accurately
delimit the bone boundaries. On the other hand, the
high complexity of the skull anatomy, its fuzzy bounda-
ries and missing edge features hinders the application of
general-purpose segmentation methods.

Background

Several skull segmentation or estimation approaches
from MRI images have been presented in the recent liter-
ature, based on image postprocessing techniques or on
the acquisition of multiple or specific MRI sequences.
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Image Postprocessing

Mathematical morphology analyses and processes geometri-
cal structures in a binary image by using a structuring ele-
ment; the operations over the structuring element include
intersection, union, inclusion, and complementation. These
morphological operators can be used on graphs, surface
meshes, solids, and many other spatial structures.

Several approaches have also used deformable models
based on an initial surface of the skull, deformed subject
to artificial forces derived from the desired features of
the segmentation. The strength of these models arises
from their ability to include high-level information with
low-level local features.

In Akahn et al (8), the authors use T1-weighted and
proton density images to segment the skull and other
tissues with a hybrid algorithm that uses snakes, region
growing, morphological operations, and thresholding.
The method described in Dogdas et al (9) finds the
inner and outer skull boundaries in T1-weighted
images using thresholding and morphological opera-
tions, and mask the results with the scalp and brain
segmentations to ensure closed and nonintersecting
skull boundaries.

Rifai et al (10) proposed a three-dimensional (3D)
method for segmenting bone regions in MRI volumes
using deformable models and taking the partial volume
effect into account. In Wang et al (11) the authors pro-
posed the use of a CT database to create a reliable shape
model used to locate the skull shape in MRI.

Most of these works are focused on the upper part of
the head, as they only have to deal with tissues sur-
rounding the brain. However, the inclusion of the jaw in
the complete head models complicates the application of
these methods due to its different signal in MRI. Only
the methods based on deformable models have dealt
with the complete skull segmentation approach.

Multiple MRI Sequences

The detection of signals from tissues and tissue compo-
nents with very short T2s is now possible due to the
development and implementation of the ultrashort

echo time (UTE) sequences (12). These sequences allow
detecting signal from previously unobservable tissues
such as cortical bone, tendons, ligaments, and menisci.
However, classification of the skull in MRI has often
been a by-product of classification techniques designed
to categorize brain tissue. Several approaches are now
focused on these techniques, but need multiple sam-
ples for each voxel to determine the corresponding
output.

Keereman et al (13) proposed the use of the transverse
relaxation rate derived from UTE images to classify the
voxels into skull, soft tissue, and air. In Berker et al (14),
the authors used UTE triple-echo (UTILE) MRI sequence
for bone detection and gradient echoes for Dixon water
and fat separation.

These methods show a good accuracy for the skull seg-
mentation task, but they do not guarantee continuous
bounding contours which can be a problem for meshing
and EM simulation. Additionally, they show limited
accuracy of bone segmentation in the interface between
bone and air. As each radial projection passes through
the center of k-space, the signals are indeed heavily aver-
aged resulting in a considerable reduction of motion arti-
facts. However, the radial approach translates into an
increased blurring, hindering edge detection.

In Belardinelli et al (15), the authors used an approach
based on neural networks to segment the skull and the
brain from successive T1-weighted 2D images. Hsu et al
(16) proposed a method consisting of acquiring T1-
weighted, T2-weighted, two echoes from a UTE sequence,
and fat and water images using a Dixon method, to clas-
sify tissues using fuzzy c-means clustering.

The use of these approaches increase the overall acqui-
sition time. The oversampling of the center of k-space in
radial imaging for the UTE sequence makes the acquisi-
tion last p

2 times longer than a conventional Cartesian
acquisition for the same matrix size. The use of several
MRI sequences increase even more the complete acquisi-
tion time, depending on the nature and the number of
sequences to acquire. For this reason, skull segmentation
using a unique T1-weighted MRI sequence is desirable,
as they are routinely acquired in clinical settings.

FIG. 1. T1-weighted MR image
(left) and CT image (right) of the
same subject. We can appreci-
ate how soft tissues can be dif-
ferentiated in the MRI and not in
the CT using low dose X-Ray,
while air (lowest signal) and
bone (highest signal) can be dis-
tinguished in the CT, but not in
the MRI (both provide a low
signal).
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Contribution

In this work, we propose a new approach for complete
skull estimation based only on T1-weighted images of
the human head. This work is the development and
assessment of the idea presented in Torrado-Carvajal
et al (17), as part of a complete pipeline for tissue seg-
mentation based on MRI only (18).

We use the patient’s MRI T1-weighted images and
register the volumes from a multi-atlas CT database. The
final segmentation is then statistically estimated from
the individual segmentations. This approach deals with
the limitations of the previous approaches presented
above, and offers a general approach to accurately seg-
ment the skull.

We have compared the results provided by four differ-
ent label fusion methods: majority voting (MV) (19),
simultaneous truth and performance level estimation
(STAPLE) (20), shape-based averaging (SBA) (21), and
selective and iterative method for performance level esti-
mation (SIMPLE) (22).

In this study, we demonstrate that a statistical combi-
nation of the multi-atlas data provides highly accurate
segmentations. The study is structured as follows: the
implementation of the skull segmentation algorithm is
detailed, including the description of the multi-atlas CT
database, the registration process of the multi-atlas to the
patient-specific MRI standard space, a description of the
different label fusion techniques used in this work and
an introduction of the MRI data sets used to obtain the
quantitative measures and the experimental results in

Section 3; Section 4 establishes a discussion about our
work including its limitations; in Section 5 we draw con-
clusions and comment on future work.

METHODS

An overview of our multi-Atlas and label fusion skull
segmentation pipeline is shown in Figure 2. In this
multi-atlas based segmentation approach, the unknown
ground truth segmentation mask LGT of the MRI volume
VMRI is estimated as LMRI by registration of a set of N CT
volumes Vn and propagating their corresponding seg-
mentations Ln. The major steps of the pipeline are: (i)
Multi-Atlas CT database. Generation of the multi-atlas
CT database An ¼ Vn;Lnð Þ, where An denotes an element
in the atlas, Vn is a CT volume, and Ln its corresponding
segmentation label map. (ii) CT-MR intermodality regis-
tration. Registration of each atlas volume Vn to the
patient-specific target volume VMRI , and propagation of
each atlas label Ln to the target volume standard space,
obtaining a new L0 label set containing N label maps L0n.
(iii) Label fusion. Combination of the propagated seg-
mentations L0n to create an estimation LMRI of the ground
truth LGT .

Step 1: Multi-Atlas CT Database

We use the CT volumes Vn from the whole head CT-scan
database for craniofacial reconstruction developed by
Tilotta et al (23). The images were acquired from healthy
volunteers using whole head Somatom Sensation 16 CT

FIG. 2. Skull estimation pipeline based only on patient-specific MRI. The different CT volumes Vn and their corresponding segmentations
Ln of the multi-atlas A are registered (affine and non-rigid) to the new MRI data VMRI. Then, label fusion techniques are applied to obtain
an estimation of the patient-specific skull LMRI.

Patient-Specific MRI Based Skull Estimation 3



scanners (Siemens, Erlangen) at the Ouest Parisien (Val
d’Or, Saint-Cloud, France) Medical Imaging Center. Sub-
jects were positioned supine. For the current work, we
have used a subset of the database, consisting of 19 sub-
jects with ages ranging from 20 to 65 years old.

The segmentation of the CT volumes Ln is performed
by thresholding of the CT data. The Hounsfield scale
allows easily differentiating bone from the rest of the tis-
sues. Additionally, an expert radiologist corrected the
segmentations to delete segmentation errors due to den-
tal restorations artifacts. These facts ensure that the
segmentations are close to the actual ground truth, mak-
ing the possible intra-rater reliability of the CT segmenta-
tion close to zero.

Step 2: CT-MRI Intermodality Registration

Every CT volume Vn from the atlas A is registered to the
MRI volume VMRI and each atlas segmentation Ln is
propagated to the unseen data standard space (MRI
space). To do so, we first need to pre-align the atlas vol-
umes with the MRI volume using an affine registration,
and then refine the registration using a nonrigid
transformation.

Mutual Information

As we are dealing with intersubject CT-MR intermodality
registration, we need a measure of the mutual depend-
ence between the images. Mutual information (MI) is a
distance measure described in the field of information
theory by Collignon et al (24) and Viola and Wells (25).
MI is a measure of the mutual dependence of two ran-
dom variables computed from the gray level joint density
of the volumes. The MI of two volumes VA and VB can
be defined as:

MI VA;VBð Þ ¼
X

a2A

X

b2B

r a; bð Þlog
r a; bð Þ

r að Þr bð Þ
[1]

where r a;bð Þ is the joint density function of VA and VB,
and r að Þ r bð Þ are the marginal probability distribution
functions of VA and VB, respectively. MI is considered as
one of the most accurate and robust distance metrics
used in registration (26,27).

Affine Registration

As the new MRI volume VMRI is acquired in a different
modality than the volumes in the atlas A, the affine
registration step transforms the CT volumes Vn in the
atlas to roughly align to VMRI and prepare them for the
nonrigid registration step. This registration can be per-
formed by directly registering each CT volume Vn to the
MRI volume VMRI , obtaining the corresponding transfor-
mation matrix TA

n . However, an efficient way to make
the pre-alignment of the atlas volumes can be performed
as follows:

1. Create an affine registered atlas, AACT , where each
CT volume Vm 8 m ¼ 2; . . . ;N is affine registered to
the volume V1 used as reference. In this case
AACT

n ¼ VACT
n ;TACT

n

! "
, where VACT

n is the volume Vn

transformed to the V1 space, and TACT
n the corre-

sponding transformation matrix used to obtain this
correspondence.

2. Affinely register the MRI volume VMRI to the CT ref-
erence volume V1, obtaining the corresponding
transformation matrix TACT

MRI .
3. Concatenate the inverse transformation matrix T

A-1
CT

MRI
with each individual transformation matrix TACT

n of
each atlas volume VACT

n producing a final transfor-
mation matrix TA0

n which is applied to obtain the
transformed volumes VA0

n .

The transformation matrices TA
n and the transformation

matrices TA0
n may differ slightly; however, they seem to

be good enough to serve as initialization for the nonrigid
registration step. This efficient pre-alignment reduces in
a factor of N the computational time for the affine
registration.

Nonrigid Registration

Once the Atlas volumes Vn are pre-aligned with the MRI
volume VMRI , we need to refine the registration to maxi-
mize the similarity between each volume VA0

n and the
volume VMRI . This step can be performed by directly
nonrigid registering each CT volume VA0

n to VMRI . In this
step we obtain the corresponding transformation TD0

n for
each volume in the atlas AACT

n .

Label Map Propagation

The transformation matrices TA0
n and the transformations

TD0
n are then concatenated to obtain the complete trans-

formations T
0

n. These T
0

n are used to directly propagate
the segmentation label maps Ln to the MRI standard
space as L

0

n.

Step 3: Label Fusion

Once we have registered the N CT volumes Vn and propa-
gated their corresponding segmentations Ln to the MRI
standard space VMRI of the new data, the final patient-
specific skull segmentation LMRI is estimated as a combi-
nation of all the segmentations, L

0

n, by using label fusion
techniques. Label fusion exploits multi-atlas segmentation
as an inference algorithm based on a nonparametric prob-
abilistic model (28); thus, this technique decides how to
fuse the information from several registered label maps.
In this work, we have compared four label fusion proce-
dures: MV (19), STAPLE (20), SBA (21), and SIMPLE (22)
algorithms. Details of every method can be found in the
online Supporting Information.

DATA SETS

To evaluate the complete segmentation pipeline, and the
result of applying the different label fusion methods, we
need T1 input volumes with a known ground truth. We
have used data from different sources.

RIRE

The Retrospective Image Registration Evaluation (RIRE)
project was designed to compare retrospective CT-MR
and PET-MR registration techniques (29). The database
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contains several intra-patient brain CT, MR, and PET
volumes acquired at Vanderbilt University Medical Cen-
ter. These datasets are now available as open-access data
(30). Volumes present several voxel sizes in x and y, and
a space between slices of 3 or 4 mm.

As the RIRE project aims at assessing different registra-
tion methods, images from the dataset are not aligned
(the “truth” transforms were defined using a prospective,
marker-based technique, but they remain unpublished).
Thus, we have used the same registration methods as in
our pipeline to register the CT images to their corre-
sponding MR images.

Clinical CT-MRI Pairs

A retrospective dataset consisting of six patients of Ruber
International Hospital in Madrid that had undergone
neurosurgery were analyzed. Every patient had an MR
and a CT volume. MR images had been acquired on a
General Electric Signa HDxt 3.0 Tesla (T) MR scanner
using the body coil for excitation and an eight-channel
quadrature brain coil for reception. Subjects were posi-
tioned supine. Imaging was performed using an isotropic
3DT1w SPGR sequence with a repetition time (TR)¼ 10.8
ms, TE¼ 4.2 ms, inversion time (TI)¼ 0 ms, number of
excitations (NEX)¼1, acquisition matrix¼ 256 % 192,
resolution¼ 1 mm % 1 mm % 1 mm, flip angle¼ 20.

Low-dose CT images were acquired on a General Elec-
tric Lightspeed VCT scanner with matrix¼512 % 512,
resolution¼ 0.56 % 0.56 mm, slice thickness¼ 1.25 mm,
PITCH¼ 0.53 mm, acquisition angle¼ 0

&
, voltage¼ 120

kV, radiation intensity¼ 200 mA. The examination is
performed with the subject in the dorsal decubitus
position.

Head MR Images

The present study was approved by the Instituto Carlos
III Ethics Board and informed consent was obtained from
all subjects before recruitment. Our dataset includes a
total of 12 healthy subjects (4 males/8 females) aged 22–
57 participating in this study. We also acquired an MRI
volume for one of the subjects in the original CT
database.

Images of the head were acquired on a General Electric
Signa HDxt 3.0T MR scanner using the body coil for
excitation and an eight-channel quadrature brain coil for
reception. Subjects were positioned supine. Imaging was
performed using an isotropic 3DT1w SPGR sequence
with a TR¼10.024 ms, TE¼ 4.56 ms, TI¼ 600 ms,
NEX¼ 1, acquisition matrix¼288 % 288, resolution¼ 1
% 1 % 1 mm, flip angle¼12. All image datasets were pre-
processed using 3D Slicer built-in modules. The prepro-
cessing step included MRI bias correction (N4 ITK MRI
bias correction).

IMPLEMENTATION DETAILS

The skull segmentation pipeline has been implemented
as an extension of 3D Slicer (31), as shown in Figure
3. The 3D Slicer is a free and open source software
platform for visualization and image analysis of medi-
cal data. The 3D Slicer platform leverages the benefits

of different open-source libraries such as the Insight
Registration and Segmentation Toolkit (ITK) and the
Visualization Toolkit (VTK), and allows rapid proto-
typing and development of medical imaging tools and
applications (32,33).

The registration steps of the pipeline are performed
with the built-in registration module (BRAINSFit) (34),
using Mattes Mutual Information with a b-spline trans-
formation model. This step allows registering the atlas
dataset to the new volume to apply on of the different
label fusion techniques.

MV and SIMPLE have been implemented as embedded
Python code in the extension, while we have used the
open source implementations of STAPLE –available as
part of the Computational Radiology Kit (http://www.
nitrc.org/projects/cmtk/) (CRKit)– and SBA –available as
part of the Computational Morphometry Toolkit (http://
nitrc.org/projects/cmtk/) (CMTK) – for this first develop-
ment. All the experiments presented in this study were
performed over Ubuntu Precise (12.04.3 LTS) on
an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz with
8GB RAM.

RESULTS

In this section, we describe the main quantitative and
qualitative results obtained on the datasets.

Quantitative Results

We have used the RIRE and the clinical CT-MRI pairs as
input datasets to quantitatively evaluate the performance
of the skull estimation pipeline. These datasets con-
tained 16 and 6 subjects, respectively, where we meas-
ured the overlap between the ground truth and our
estimation by using the Dice coefficient (35).

The Dice coefficient quantifies the similarity between
regions by quantifying the spatial overlap. The Dice
coefficient is computed as shown in Eq. [2]. Compared
with Euclidean distance, the Dice coefficient gives
more weight to voxels where the two images classifica-
tion agree, and retains sensitivity in more heterogene-
ous data sets by giving less weight to outliers. Its
values range between 0 (no overlap) and 1 (perfect
agreement).

D ¼ 2 A \ Bð Þ
A \ Bð Þ þ A [ Bð Þ

[2]

Figure 4A shows the performance of the different label
fusion methods on the RIRE dataset. The Dice coefficient
between the ground truth and the automated segmenta-
tion presents an overlap of 37.66 6 7.54% for MV and
SIMPLE, 71.79 6 7.28% for STAPLE, and 72.46 6 6.99%
for SBA. Due to the low resolution in the z axis of the
volumes in the RIRE database, the registration of some of
the volumes in the database is not correct. Majority vot-
ing and SIMPLE are not able to discard these results,
thus providing very bad segmentation results. STAPLE
and SBA iteratively select the better registrations in
the database, thus allowing to obtain a good final
segmentation.

Patient-Specific MRI Based Skull Estimation 5
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Figure 4B shows the performance of the different label
fusion methods over the clinical CT-MRI dataset. The
Dice coefficient between the ground truth and the auto-
mated segmentation presents a value of 48.79 6 20.39%
for MV, 78.31 6 6.97% for STAPLE, 73.70 6 7.24% for
SBA, and 58.06 6 7.80% for SIMPLE.

Figure 4C shows the performance of the different label
fusion methods on the whole head CT-MRI pair. The
Dice coefficient between the ground truth and the auto-
mated segmentation presents a value of 77.67% for MV,
78.68% for STAPLE, 77.22% for SBA, and 77.67% for
SIMPLE.

FIG. 4. Box and whisker plots of the Dice coefficient for the four estimation methods over the RIRE dataset (A), the clinical CT-MRI
dataset (B), and the whole head CT-MRI pair (C). On each box, the central mark is the median, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme data points [1.5 % inter-quartile range (IQR)], and outliers are plotted
individually.

FIG. 3. Graphical user interface of the skull segmenter extension. It allows loading a new MRI volume and estimating the skull by one of
the four label fusion methods used in this study.
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The DICE coefficient is a global measurement of seg-
mentation quality. We have analyzed the spatial distribu-
tion of the fractional error by aligning all individual
error masks to a template and computing the average
error distribution, which is shown in Figure 5. Of the
voxels showing some misclassification, only 2% showed
a fractional error over 0.5 (the voxel was misclassified in
more than half of the patients).

We have also measured the execution time for the
three datasets. Table 1 shows the time taken by a com-
plete execution of the registration and each label fusion
approach on all datasets. The mean execution time and
the 95% confidence interval are presented for each of
the methods.

Qualitative Results

Visual inspection of the different approaches compared
with the ground truth provides further assessment. Fig-
ure 6 shows the estimation result in five slices of a com-
plete head MRI volume of a healthy subject. The method
approaches the shape of the skull generally well. How-
ever, it can be seen that in some places, such as the fron-

tal sinuses or cervical vertebrae, the estimation deviates
from the ground truth skull contour.

Figure 7 shows the 3D rendering for 10 subjects. In
this representation we can appreciate the level of detail
of the approach.

The evaluation of our method on the RIRE dataset pro-
vides more information regarding the estimation of the
skull on unhealthy subjects. Figure 8 shows the resulting
mask in six pathological subjects from this dataset. The
method is able to estimate the boundaries of the skull
avoiding the pathological structures, even when they are
close to the skull boundaries.

DISCUSSION

MRI-based bone segmentation, and particularly auto-
matic segmentation of the skull, is a challenging task.
Due to the nature of the tissue properties, bone and air
present low signal intensity on MR images, making it dif-
ficult to accurately delimit the bone boundaries, while
the high complexity of the skull anatomy, its fuzzy boun-
daries and missing edge features make it difficult to
apply general purpose segmentation methods.

The estimation of the skull based only on the patient-
specific MRI is feasible with a previous CT atlas dataset
and label fusion techniques. The results show how the
estimation of the skull adjusts to the bone boundary lim-
its while differentiating the air. The strategy of this
method is to leverage the benefits of “a priori” knowl-
edge from the CT atlas dataset and label fusion
techniques.

The proposed method is able to approximate the skull
contours and differentiate air from bone with similar
accuracy as the results presented in Wang et al (11), that
reported a Dice coefficient of 0.75, even though they
only showed results on the upper half of the skull. Addi-
tionally, their method requires previous annotation of
the database by an expert, while our method requires no
previous manual intervention.

As a result of the label fusion volume averaging, the
contours of the skull are smoothed in several places. For
example, our method fails to capture the details of the
bone spikes in the area inside the sinuses, as seen in Fig-
ure 5. However, these errors are not crucial in most of
the potential applications of our method. The skull esti-
mation presented in this study has been successfully
used to create complete patient-specific tissue models

FIG. 5. Distribution of the segmentation fractional error for the STAPLE estimation approach over the clinical head CT-MRI pairs data-
base. In this error map 0 represents that all subjects in the dataset were appropriately segmented in that voxel, while 1 represents all
subjects were inaccurately segmented. A representative slice in each plane (sagittal, coronal and axial) is represented.

Table 1
Comparison of the Execution Time (Mean with 95% Confidence
Interval) Taken in Estimating the Skull for All the Subjects in the
Different Datasets Using the Four Label-Fusion Approaches for
Eacha

Dataset

Label
fusion

technique
Registration

time (minutes)

Label
fusion time
(seconds)

RIRE MV 19.50 6 4.57 0.47 6 0.09
STAPLE 11.86 6 2.17

SBA 35.64 6 5.16
SIMPLE 15.50 6 2.69

Clinical
CT-MRI pairs

MV 22.89 6 1.58 0.98 6 0.10
STAPLE 53.73 6 3.47

SBA 23.40 6 1.47
SIMPLE 21.56 6 2.16

Head
CT-MRI pair

MV 21.71 6 2.22 1.83 6 0.07
STAPLE 38.88 6 3.16

SBA 84.30 6 5.15
SIMPLE 39.73 6 1.29

aRegistration time refers to the time taken in registering the whole
dataset to the input image. We performed 20 executions for the
CT-MRI pair to obtain the mean execution time, as this dataset
only contained one subject.

Patient-Specific MRI Based Skull Estimation 7



for EM modeling in EEG/MEG forward problem solving
(36) and local SAR management (37,38), and PET/MR
attenuation correction (39).

Our pipeline requires cross-modality registration, so
that similarity based approaches to label-fusion are not
directly applicable. Better results could be achieved

FIG. 6. Skull segmentation in five axial slices of an MRI volume. From left to right: CT ground truth segmentation, MV estimation,
STAPLE estimation, SBA estimation, and SIMPLE estimation.
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using MRI-to-MRI registration, should we have MR-CT
pairs for all subjects in the database.

Visual inspection of the segmentation results shows
the high quality of the segmentations, and the robustness
of the method in the presence of tumors and other brain
pathologies. The use of this approach may lead to a
decrease in patient ionization by removing the need of
patient-specific CT acquisitions while obtaining a good

estimation of the ground truth. These results are promis-
ing and may be included in several protocols such as
brain studies in PET-MR scanners.

As can be seen in Table 1, the main drawback of the
proposed method is the computational burden intro-
duced by the multiple registrations and information
fusion from the entire training data. Our approach pro-
vides good results, but computing many non-rigid

FIG. 7. Reconstruction of the skull for 10 subjects in the study. These segmentations were obtained using the STAPLE estimation
approach.

FIG. 8. Boundaries of the skull estimation method on patients presenting different neurological diseases. The skull estimation general-
izes well, avoiding pathological tissues independently from their signal (hypoechoic or hyperechoic).

Patient-Specific MRI Based Skull Estimation 9



registrations is very time consuming. However, the gain
to a patient by not perfoming a CT scan fully justifies
the computational cost. Parallelization of the pipeline
could reduce the overall time taken for skull estimation.
Increasing the size and variety of the atlas could improve
the accuracy of the results.

CONCLUSIONS

In this study, we have presented an approach for the
estimation of the human skull by using a multi-atlas and
label fusion approach based on acquired MR images
only. The algorithm presented in this work removes the
need of a patient-specific CT acquisition. The approach
performs successfully on a wide range of data and could
be useful for tasks where the skull estimation is needed
such as PET/MR attenuation correction, and SAR
calculations.
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