Publications by Year: 2004

2004
Kubicki M, Maier SE, Westin C-F, Mamata H, Ersner-Hershfield H, Estepar R, Kikinis R, Jolesz FA, McCarley RW, Shenton ME. Comparison of single-shot echo-planar and line scan protocols for diffusion tensor imaging. Acad Radiol 2004;11(2):224-32.Abstract
RATIONALE AND OBJECTIVES: Both single-shot diffusion-weighted echo-planar imaging (EPI) and line scan diffusion imaging (LSDI) can be used to obtain magnetic resonance diffusion tensor data and to calculate directionally invariant diffusion anisotropy indices, ie, indirect measures of the organization and coherence of white matter fibers in the brain. To date, there has been no comparison of EPI and LSDI. Because EPI is the most commonly used technique for acquiring diffusion tensor data, it is important to understand the limitations and advantages of LSDI relative to EPI. MATERIALS AND METHODS: Five healthy volunteers underwent EPI and LSDI diffusion on a 1.5 Tesla magnet (General Electric Medical Systems, Milwaukee, WI). Four-mm thick coronal sections, covering the entire brain, were obtained. In addition, one subject was tested with both sequences over four sessions. For each image voxel, eigenvectors and eigenvalues of the diffusion tensor were calculated, and fractional anisotropy (FA) was derived. Several regions of interest were delineated, and for each, mean FA and estimated mean standard deviation were calculated and compared. RESULTS: Results showed no significant differences between EPI and LSDI for mean FA for the five subjects. When intersession reproducibility for one subject was evaluated, there was a significant difference between EPI and LSDI in FA for the corpus callosum and the right uncinate fasciculus. Moreover, errors associated with each FA measure were larger for EPI than for LSDI. CONCLUSION: Results indicate that both EPI- and LSDI-derived FA measures are sufficiently robust. However, when higher accuracy is needed, LSDI provides smaller error and smaller inter-subject and inter-session variability than EPI.
Levitt JJ, Westin CF, Nestor PG, Estepar RSJ, Dickey CC, Voglmaier MM, Seidman LJ, Kikinis R, Jolesz FA, McCarley RW, Shenton ME. Shape of caudate nucleus and its cognitive correlates in neuroleptic-naive schizotypal personality disorder. Biol Psychiatry 2004;55(2):177-84.Abstract
BACKGROUND: We measured the shape of the head of the caudate nucleus with a new approach based on magnetic resonance imaging (MRI) in schizotypal personality disorder (SPD) subjects in whom we previously reported decreased caudate nucleus volume. We believe MRI shape analysis complements traditional MRI volume measurements. METHODS: Magnetic resonance imaging scans were used to measure the shape of the caudate nucleus in 15 right-handed male subjects with SPD, who had no prior neuroleptic exposure, and in 14 matched normal comparison subjects. With MRI processing tools, we measured the head of the caudate nucleus using a shape index, which measured how much a given shape deviates from a sphere. RESULTS: In relation to comparison subjects, neuroleptic never-medicated SPD subjects had significantly higher (more "edgy") head of the caudate shape index scores, lateralized to the right side. Additionally, for SPD subjects, higher right and left head of the caudate SI scores correlated significantly with poorer neuropsychological performance on tasks of visuospatial memory and auditory/verbal working memory, respectively. CONCLUSIONS: These data confirm the value of measuring shape, as well as volume, of brain regions of interest and support the association of intrinsic pathology in the caudate nucleus, unrelated to neuroleptic medication, with cognitive abnormalities in the schizophrenia spectrum.
Levitt JJ, Westin C-F, Nestor PG, San Jose Estépar R, Dickey CC, Voglmaier MM, Seidman LJ, Kikinis R, Jolesz FA, McCarley RW, Shenton ME. Shape of caudate nucleus and its cognitive correlates in neuroleptic-naive schizotypal personality disorder. Biological psychiatryBiological psychiatry 2004;55:177-184.Abstract

BACKGROUND: We measured the shape of the head of the caudate nucleus with a new approach based on magnetic resonance imaging (MRI) in schizotypal personality disorder (SPD) subjects in whom we previously reported decreased caudate nucleus volume. We believe MRI shape analysis complements traditional MRI volume measurements. METHODS: Magnetic resonance imaging scans were used to measure the shape of the caudate nucleus in 15 right-handed male subjects with SPD, who had no prior neuroleptic exposure, and in 14 matched normal comparison subjects. With MRI processing tools, we measured the head of the caudate nucleus using a shape index, which measured how much a given shape deviates from a sphere. RESULTS: In relation to comparison subjects, neuroleptic never-medicated SPD subjects had significantly higher (more "edgy") head of the caudate shape index scores, lateralized to the right side. Additionally, for SPD subjects, higher right and left head of the caudate SI scores correlated significantly with poorer neuropsychological performance on tasks of visuospatial memory and auditory/verbal working memory, respectively. CONCLUSIONS: These data confirm the value of measuring shape, as well as volume, of brain regions of interest and support the association of intrinsic pathology in the caudate nucleus, unrelated to neuroleptic medication, with cognitive abnormalities in the schizophrenia spectrum.

biol._psychiatry_2004_levitt.pdf