2017
Washko GR, Kinney GL, Ross JC, San José Estépar R, Han MLK, Dransfield MT, Kim V, Hatabu H, Come CE, Bowler RP, Silverman EK, Crapo J, Lynch DA, Hokanson J, Diaz AA.
Lung Mass in Smokers. Acad Radiol 2017;24(4):386-392.
AbstractRATIONALE AND OBJECTIVE: Emphysema is characterized by airspace dilation, inflammation, and irregular deposition of elastin and collagen in the interstitium. Computed tomographic studies have reported that lung mass (LM) may be increased in smokers, a finding attributed to inflammatory and parenchymal remodeling processes observed on histopathology. We sought to examine the epidemiologic and clinical associations of LM in smokers.
MATERIALS AND METHODS: Baseline epidemiologic, clinical, and computed tomography (CT) data (n = 8156) from smokers enrolled into the COPDGene Study were analyzed. LM was calculated from the CT scan. Changes in lung function at 5 years' follow-up were available from 1623 subjects. Regression analysis was performed to assess for associations of LM with forced expiratory volume in 1 second (FEV) and FEV decline.
RESULTS: Subjects with Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1 chronic obstructive pulmonary disease had greater LM than either smokers with normal lung function or those with GOLD 2-4 chronic obstructive pulmonary disease (P < 0.001 for both comparisons). LM was predictive of the rate of the decline in FEV (decline per 100 g, -4.7 ± 1.7 mL/y, P = 0.006).
CONCLUSIONS: Our cross-sectional data suggest the presence of a biphasic radiological remodeling process in smokers: the presence of such nonlinearity must be accounted for in longitudinal computed tomographic studies. Baseline LM predicts the decline in lung function.
Ash SY, Harmouche R, Ross JC, Diaz AA, Hunninghake GM, Putman RK, Onieva J, Martinez FJ, Choi AM, Lynch DA, Hatabu H, Rosas IO, Estepar RSJ, Washko GR.
The Objective Identification and Quantification of Interstitial Lung Abnormalities in Smokers. Acad Radiol 2017;24(8):941-946.
AbstractRATIONALE AND OBJECTIVES: Previous investigation suggests that visually detected interstitial changes in the lung parenchyma of smokers are highly clinically relevant and predict outcomes, including death. Visual subjective analysis to detect these changes is time-consuming, insensitive to subtle changes, and requires training to enhance reproducibility. Objective detection of such changes could provide a method of disease identification without these limitations. The goal of this study was to develop and test a fully automated image processing tool to objectively identify radiographic features associated with interstitial abnormalities in the computed tomography scans of a large cohort of smokers.
MATERIALS AND METHODS: An automated tool that uses local histogram analysis combined with distance from the pleural surface was used to detect radiographic features consistent with interstitial lung abnormalities in computed tomography scans from 2257 individuals from the Genetic Epidemiology of COPD study, a longitudinal observational study of smokers. The sensitivity and specificity of this tool was determined based on its ability to detect the visually identified presence of these abnormalities.
RESULTS: The tool had a sensitivity of 87.8% and a specificity of 57.5% for the detection of interstitial lung abnormalities, with a c-statistic of 0.82, and was 100% sensitive and 56.7% specific for the detection of the visual subtype of interstitial abnormalities called fibrotic parenchymal abnormalities, with a c-statistic of 0.89.
CONCLUSIONS: In smokers, a fully automated image processing tool is able to identify those individuals who have interstitial lung abnormalities with moderate sensitivity and specificity.
Araki T, Yanagawa M, Sun FJ, Dupuis J, Nishino M, Yamada Y, Washko GR, Christiani DC, Tomiyama N, O'Connor GT, Hunninghake GM, Hatabu H.
Pleural abnormalities in the Framingham Heart Study: prevalence and CT image features. Occup Environ Med 2017;74(10):756-761.
AbstractBACKGROUND: The prevalence of pleural abnormalities in the general population is an epidemiologically important index of asbestos exposure, which has not been investigated since a radiography-based study in 1980.
METHODS: We examined 2633 chest CT scans (mean 59.2 years, 50% female) from the Framingham Heart Study (FHS) for the presence and image characteristics of pleural plaques and diffuse pleural thickening. Demographics and pulmonary function were stratified by the presence of pleural abnormalities in association with interstitial lung abnormalities.
RESULTS: Pleural abnormalities were present in 1.5% (95% CI 1.1% to 2.1%). Pleural lesions were most commonly bilateral (90.0%), multiple (77.5%), calcified (97.5%) and commonly involved posterior (lower: 92.5%, middle: 87.5%), anterior (upper: 77.5%, middle: 77.5%) and diaphragmatic areas (72.5%). Participants with pleural abnormalities were significantly older (75.7 years, p <0.0001), male (92.5%, p <0.0001), former or current smokers (80.0%, p <0.001) with higher pack-years (33.3, p <0.0001). No significant reduction was noted in pulmonary function measures (p=0.07-0.94) when adjusted for the associated covariates, likely due to small number of cases with pleural abnormalities. Information about prior history of asbestos exposure and occupation was not available.
CONCLUSIONS: Pleural plaques and diffuse pleural thickening are present on CT in 1.5% of the FHS cohort. The current prevalence of the pleural abnormalities is smaller than that reported in the previous population-based study using chest radiography, likely representing lower asbestos exposure in recent decades. The posterior portion of the pleura is most frequently involved but the anterior portion is also commonly involved.
Putman RK, Gudmundsson G, Araki T, Nishino M, Sigurdsson S, Gudmundsson EF, Eiríksdottír G, Aspelund T, Ross JC, San José Estépar R, Miller ER, Yamada Y, Yanagawa M, Tomiyama N, Launer LJ, Harris TB, El-Chemaly S, Raby BA, Cho MH, Rosas IO, Washko GR, Schwartz DA, Silverman EK, Gudnason V, Hatabu H, Hunninghake GM.
The promoter polymorphism is associated with specific interstitial lung abnormality subtypes. Eur Respir J 2017;50(3)
AbstractThe promoter polymorphism (rs35705950) has been associated with interstitial lung abnormalities (ILA) in white participants from the general population; whether these findings are replicated and influenced by the ILA subtype is not known. We evaluated the associations between the genotype and ILA in cohorts with extensive imaging characterisation.We performed ILA phenotyping and promoter genotyping in 5308 and 9292 participants from the AGES-Reykjavik and COPDGene cohorts, respectively.We found that ILA was present in 7% of participants from the AGES-Reykjavik, 8% of non-Hispanic white participants from COPDGene and 7% of African-American participants from COPDGene. Although the genotype was strongly associated (after correction for multiple testing) with ILA (OR 2.1, 95% CI 1.8-2.4, p=1×10), there was evidence of significant heterogeneity between cohorts (I=81%). When narrowed to specific radiologic subtypes, ( subpleural ILA), the genotype remained strongly associated (OR 2.6, 95% CI 2.2-3.1, p=1×10) with minimal heterogeneity (I=0%). Although there was no evidence that the genotype influenced survival, there was evidence that genotype improved risk prediction for possible usual interstitial pneumonia (UIP) or a UIP pattern in non-Hispanic white populations.The promoter polymorphism is strongly associated with ILA and specific radiologic subtypes of ILA, with varying degrees of heterogeneity in the underlying populations.
Gazourian L, Spring L, Meserve E, Hwang D, Diaz AA, Ash SY, Ho VT, Sholl LM, Washko GR.
Pulmonary Clinicopathological Correlation after Allogeneic Hematopoietic Stem Cell Transplantation: An Autopsy Series. Biol Blood Marrow Transplant 2017;23(10):1767-1772.
AbstractPulmonary complications are a significant cause of morbidity, mortality, and resource utilization after hematopoietic stem cell transplantation (HSCT). The objective of this study was to compare antemortem clinical suspicion of pulmonary complications and postmortem findings in a modern HSCT cohort. All patients who underwent allogeneic HSCT at our institution (n = 1854) between January 1, 2000 and June 30, 2010 were reviewed and patients who died of any cause greater than 1 year after HSCT and had an unrestricted autopsy available for analysis were included. Presence of pulmonary graft-versus-host disease (GVHD) was assessed by a pathologist blinded to the autopsy report, as previously described by Yousem (1995). A total of 35 (1.9%) patients had autopsies available for review. Airway disease, vascular disease, and interstitial disease were all clinically under-recognized compared with the pathological findings on autopsy. Varying degrees of pathological changes were detected, including 10 (28.6%) patients having bronchiolitis obliterans (BO) and 12 (34.3%) patients having pulmonary veno-occlusive disease (PVOD). Pulmonary manifestations of chronic GVHD, particularly BO and PVOD, were clinically under-recognized in our cohort. Our results suggest that PVOD, which has traditionally been considered a rare complication, may be clinically and histologically under-recognized.
Gazourian L, Ash S, Meserve EEK, Diaz A, Estepar RSJ, El-Chemaly SY, Rosas IO, Divo M, Fuhlbrigge AL, Camp PC, Ho VT, Bhatt AS, Goldberg HJ, Sholl LM, Washko GR.
Quantitative computed tomography assessment of bronchiolitis obliterans syndrome after lung transplantation. Clin Transplant 2017;31(5)
AbstractBACKGROUND: Bronchiolitis obliterans syndrome (BOS) is a clinical manifestation of chronic allograft rejection following lung transplantation. We examined the quantitative measurements of the proximal airway and vessels and pathologic correlations in subjects with BOS.
METHODS: Patients who received a lung transplant at the Brigham and Women's Hospital between December 1, 2002 and December 31, 2010 were included in this study. We characterized the quantitative CT measures of proximal airways and vessels and pathological changes.
RESULTS: Ninety-four (46.1%) of the 204 subjects were included in the study. There was a significant increase in the airway vessel ratio in subjects who developed progressive BOS compared to controls and non-progressors. There was a significant increase in airway lumen area and decrease in vessel cross-sectional area in patients with BOS compared to controls. Patients with BOS had a significant increase in proximal airway fibrosis compared to controls.
CONCLUSIONS: BOS is characterized by central airway dilation and vascular remodeling, the degree of which is correlated to decrements in lung function. Our data suggest that progressive BOS is a pathologic process that affects both the central and distal airways.
Diaz AA, Young TP, Maselli DJ, Martinez CH, Gill R, Nardelli P, Wang W, Kinney GL, Hokanson JE, Washko GR, Estepar RSJ.
Quantitative CT Measures of Bronchiectasis in Smokers. Chest 2017;151(6):1255-1262.
AbstractBACKGROUND: Bronchiectasis is frequent in smokers with COPD; however, there are only limited data on objective assessments of this process. The objective was to assess bronchovascular morphology, calculate the ratio of the diameters of bronchial lumen and adjacent artery (BA ratio), and identify those measurements able to discriminate bronchiectasis.
METHODS: We collected quantitative CT (QCT) measures of BA ratios, peak wall attenuation, wall thickness (WT), wall area, and wall area percent (WA%) at matched fourth through sixth airway generations in 21 ever smokers with bronchiectasis (cases) and 21 never-smoking control patients (control airways). In cases, measurements were collected at both bronchiectatic and nonbronchiectatic airways. Logistic analysis and the area under receiver operating characteristic curve (AUC) were used to assess the predictive ability of QCT measurements for bronchiectasis.
RESULTS: The whole-lung and fourth through sixth airway generation BA ratio, WT, and WA% were significantly greater in bronchiectasis cases than control patients. The AUCs for the BA ratio to predict bronchiectasis ranged from 0.90 (whole lung) to 0.79 (fourth-generation). AUCs for WT and WA% ranged from 0.72 to 0.75 and from 0.71 to 0.75. The artery diameters but not bronchial diameters were smaller in bronchiectatic than both nonbronchiectatic and control airways (P < .01 for both).
CONCLUSIONS: Smoking-related increases in the BA ratio appear to be driven by reductions in vascular caliber. QCT measures of BA ratio, WT, and WA% may be useful to objectively identify and quantify bronchiectasis in smokers.
TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT00608764; URL:
www.clinicaltrials.gov.
Labaki WW, Martinez CH, Martinez FJ, Galbán CJ, Ross BD, Washko GR, Barr GR, Regan EA, Coxson HO, Hoffman EA, Newell JD, Curran-Everett D, Hogg JC, Crapo JD, Lynch DA, Kazerooni EA, Han MLK.
The Role of Chest Computed Tomography in the Evaluation and Management of the Patient with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017;196(11):1372-1379.
Ash SY, Diaz AA.
The role of imaging in the assessment of severe asthma. Curr Opin Pulm Med 2017;23(1):97-102.
AbstractPURPOSE OF REVIEW: The present review aims to summarize the most recent evidence related to imaging and severe asthma, both with regard to advances in imaging research and to their current and potential clinical implications.
RECENT FINDINGS: Recent work in imaging in severe asthma has principally been using computed tomography (CT) and MRI, as well as the integration of the two. Some of the most notable findings include the use of CT imaging biomarkers to create unique clusters of asthmatics, and the use of co-registration to link CT images of airways with regional variation in ventilation in MRI. In addition, temporal studies have shown that some the ventilation defects found using MRI in asthmatics are intermittent and others are persistent, but both are associated with lower lung function.
SUMMARY: The role of imaging in severe asthma currently is primarily in the exclusion of comorbid or other conditions, or in the assessment for complications in the setting of acute decompensation. A rapidly expanding body of literature using CT and MRI suggests that these tools may soon be of utility in the chronic management of the disease.
Bersvendsen J, Orderud F, Lie Ø, Massey RJ, Fosså K, San José Estépar R, Urheim S, Samset E.
Semiautomated biventricular segmentation in three-dimensional echocardiography by coupled deformable surfaces. J Med Imaging (Bellingham) 2017;4(2):024005.
AbstractWith the advancement of three-dimensional (3-D) real-time echocardiography in recent years, automatic creation of patient specific geometric models is becoming feasible and important in clinical decision making. However, the vast majority of echocardiographic segmentation methods presented in the literature focus on the left ventricle (LV) endocardial border, leaving segmentation of the right ventricle (RV) a largely unexplored problem, despite the increasing recognition of the RV's role in cardiovascular disease. We present a method for coupled segmentation of the endo- and epicardial borders of both the LV and RV in 3-D ultrasound images. To solve the segmentation problem, we propose an extension of a successful state-estimation segmentation framework with a geometrical representation of coupled surfaces, as well as the introduction of myocardial incompressibility to regularize the segmentation. The method was validated against manual measurements and segmentations in images of 16 patients. Mean absolute distances of [Formula: see text], [Formula: see text], and [Formula: see text] between the proposed and reference segmentations were observed for the LV endocardium, RV endocardium, and LV epicardium surfaces, respectively. The method was computationally efficient, with a computation time of [Formula: see text].
Norton I, Essayed WI, Zhang F, Pujol S, Yarmarkovich A, Golby AJ, Kindlmann G, Wassermann D, Estepar RSJ, Rathi Y, Pieper S, Kikinis R, Johnson HJ, Westin C-F, O'Donnell LJ.
SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research. Cancer Res 2017;77(21):e101-e103.
AbstractDiffusion MRI (dMRI) is the only noninvasive method for mapping white matter connections in the brain. We describe SlicerDMRI, a software suite that enables visualization and analysis of dMRI for neuroscientific studies and patient-specific anatomic assessment. SlicerDMRI has been successfully applied in multiple studies of the human brain in health and disease, and here, we especially focus on its cancer research applications. As an extension module of the 3D Slicer medical image computing platform, the SlicerDMRI suite enables dMRI analysis in a clinically relevant multimodal imaging workflow. Core SlicerDMRI functionality includes diffusion tensor estimation, white matter tractography with single and multi-fiber models, and dMRI quantification. SlicerDMRI supports clinical DICOM and research file formats, is open-source and cross-platform, and can be installed as an extension to 3D Slicer (
www.slicer.org). More information, videos, tutorials, and sample data are available at dmri.slicer.org .
Vegas-Sánchez-Ferrero G, Ledesma-Carbayo MJ, Washko GR, San José Estépar R.
Statistical characterization of noise for spatial standardization of CT scans: Enabling comparison with multiple kernels and doses. Med Image Anal 2017;40:44-59.
AbstractComputerized tomography (CT) is a widely adopted modality for analyzing directly or indirectly functional, biological and morphological processes by means of the image characteristics. However, the potential utilization of the information obtained from CT images is often limited when considering the analysis of quantitative information involving different devices, acquisition protocols or reconstruction algorithms. Although CT scanners are calibrated as a part of the imaging workflow, the calibration is circumscribed to global reference values and does not circumvent problems that are inherent to the imaging modality. One of them is the lack of noise stationarity, which makes quantitative biomarkers extracted from the images less robust and stable. Some methodologies have been proposed for the assessment of non-stationary noise in reconstructed CT scans. However, those methods focused on the non-stationarity only due to the reconstruction geometry and are mainly based on the propagation of the variance of noise throughout the whole reconstruction process. Additionally, the philosophy followed in the state-of-the-art methods is based on the reduction of noise, but not in the standardization of it. This means that, even if the noise is reduced, the statistics of the signal remain non-stationary, which is insufficient to enable comparisons between different acquisitions with different statistical characteristics. In this work, we propose a statistical characterization of noise in reconstructed CT scans that leads to a versatile statistical model that effectively characterizes different doses, reconstruction kernels, and devices. The statistical model is generalized to deal with the partial volume effect via a localized mixture model that also describes the non-stationarity of noise. Finally, we propose a stabilization scheme to achieve stationary variance. The validation of the proposed methodology was performed with a physical phantom and clinical CT scans acquired with different configurations (kernels, doses, algorithms including iterative reconstruction). The results confirmed its suitability to enable comparisons with different doses, and acquisition protocols.
Maselli DJ, Amalakuhan B, Keyt H, Diaz AA.
Suspecting non-cystic fibrosis bronchiectasis: What the busy primary care clinician needs to know. Int J Clin Pract 2017;71(2)
AbstractAIMS: Non-cystic fibrosis bronchiectasis (NCFB) is a chronic, progressive respiratory disorder characterised by irreversibly and abnormally dilated airways, persistent cough, excessive sputum production and recurrent pulmonary infections. In the last several decades, its prevalence has increased, making it likely to be encountered in the primary care setting. The aim was to review the clinical presentation and diagnosis of NCFB, with an emphasis on the role of computed tomography (CT).
METHODS: For this review, trials and reports were identified from PubMed/Medline and ClinicalTrials.gov from the US NIH and the Cochrane Register of Controlled Trials. The search used keywords: bronchiectasis, non-cystic fibrosis bronchiectasis, chronic pulmonary infection and computed tomography. No date/language restrictions were used.
RESULTS: Non-cystic fibrosis bronchiectasis often coexists with other respiratory conditions, such as chronic obstructive pulmonary disease. The prevalence of NCFB is increasing, particularly in women and older individuals, possibly as a result of increased physician awareness and widespread use of CT, which is the gold standard for the diagnosis of NCFB. CT can assist in identifying an underlying cause of NCFB and determining the extent and severity of the disease.
DISCUSSION: Non-cystic fibrosis bronchiectasis should be suspected in the primary care setting in patients with chronic cough, purulent sputum and frequent respiratory infections that tend to resolve slowly or partially. Early diagnosis and determination of the extent and severity of the disease by CT and other tests are critical to establish therapy to improve quality of life and potentially slow progressive decline of lung function in patients with NCFB.
Rahaghi FN, Vegas-Sanchez-Ferrero G, Minhas JK, Come CE, De La Bruere I, Wells JM, González G, Bhatt SP, Fenster BE, Diaz AA, Kohli P, Ross JC, Lynch DA, Dransfield MT, Bowler RP, Ledesma-Carbayo MJ, San José Estépar R, Washko GR.
Ventricular Geometry From Non-contrast Non-ECG-gated CT Scans: An Imaging Marker of Cardiopulmonary Disease in Smokers. Acad Radiol 2017;24(5):594-602.
AbstractRATIONALE AND OBJECTIVES: Imaging-based assessment of cardiovascular structure and function provides clinically relevant information in smokers. Non-cardiac-gated thoracic computed tomographic (CT) scanning is increasingly leveraged for clinical care and lung cancer screening. We sought to determine if more comprehensive measures of ventricular geometry could be obtained from CT using an atlas-based surface model of the heart.
MATERIALS AND METHODS: Subcohorts of 24 subjects with cardiac magnetic resonance imaging (MRI) and 262 subjects with echocardiography were identified from COPDGene, a longitudinal observational study of smokers. A surface model of the heart was manually initialized, and then automatically optimized to fit the epicardium for each CT. Estimates of right and left ventricular (RV and LV) volume and free-wall curvature were then calculated and compared to structural and functional metrics obtained from MRI and echocardiograms.
RESULTS: CT measures of RV dimension and curvature correlated with similar measures obtained using MRI. RV and LV volume obtained from CT inversely correlated with echocardiogram-based estimates of RV systolic pressure using tricuspid regurgitation jet velocity and LV ejection fraction respectively. Patients with evidence of RV or LV dysfunction on echocardiogram had larger RV and LV dimensions on CT. Logistic regression models based on demographics and ventricular measures from CT had an area under the curve of >0.7 for the prediction of elevated right ventricular systolic pressure and ventricular failure.
CONCLUSIONS: These data suggest that non-cardiac-gated, non-contrast-enhanced thoracic CT scanning may provide insight into cardiac structure and function in smokers.
Halper-Stromberg E, Cho MH, Wilson C, Nevrekar D, Crapo JD, Washko G, San José Estépar R, Lynch DA, Silverman EK, Leach S, Castaldi PJ.
Visual Assessment of Chest Computed Tomographic Images Is Independently Useful for Genetic Association Analysis in Studies of Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2017;14(1):33-40.
AbstractRATIONALE: Automated analysis of computed tomographic (CT) lung images for epidemiologic and genetic association studies is increasingly common, but little is known about the utility of visual versus semiautomated emphysema and airway assessments for genetic association studies.
OBJECTIVES: Assess the relative utility of visual versus semiautomated emphysema and airway assessments for genetic association studies.
METHODS: A standardized inspection protocol was used to visually assess chest CT images for 1,540 non-Hispanic white subjects within the COPDGene Study for the presence and severity of radiographic features representing airway wall thickness and emphysema. A genome-wide association study (GWAS) was performed, and two sets of candidate single-nucleotide polymorphisms with a higher prior likelihood of association were specified a priori for separate analysis. For each visual CT examination feature, a corresponding semiautomated CT feature(s) was identified for comparison in the same subjects.
MEASUREMENTS AND MAIN RESULTS: GWAS for visual features of chest CT scans identified a genome-wide significant association with visual emphysema at the 15q25 locus (P = 6.3e). In the a priori-specified set of 19 previously identified GWAS loci, 7 and 8 loci were associated with airway measures or emphysema measures, respectively. In the a priori-specified candidate gene set, 13 of 196 candidate genes harbored a nearby single-nucleotide polymorphism significantly associated with an emphysema phenotype. Visual CT examination associations were robust to adjustment for semiautomated correlates in many cases.
CONCLUSIONS: Standardized visual assessments of emphysema and airway disease are significantly associated with genetic loci previously associated with chronic obstructive pulmonary disease susceptibility or semiautomated CT examination phenotypes in GWAS. Visual CT measures of emphysema and airways disease offer independent information for genetic association studies in relation to standard semiautomated measures.