CT-based Phenotype for Airway Remodeling in COPD

Castaldi PJ, San José Estépar R, Mendoza CS, Hersh CP, Laird N, Crapo JD, Lynch DA, Silverman EK, Washko GR. Distinct quantitative computed tomography emphysema patterns are associated with physiology and function in smokers. Am J Respir Crit Care Med 2013;188(9):1083-90.Abstract
RATIONALE: Emphysema occurs in distinct pathologic patterns, but little is known about the epidemiologic associations of these patterns. Standard quantitative measures of emphysema from computed tomography (CT) do not distinguish between distinct patterns of parenchymal destruction. OBJECTIVES: To study the epidemiologic associations of distinct emphysema patterns with measures of lung-related physiology, function, and health care use in smokers. METHODS: Using a local histogram-based assessment of lung density, we quantified distinct patterns of low attenuation in 9,313 smokers in the COPDGene Study. To determine if such patterns provide novel insights into chronic obstructive pulmonary disease epidemiology, we tested for their association with measures of physiology, function, and health care use. MEASUREMENTS AND MAIN RESULTS: Compared with percentage of low-attenuation area less than -950 Hounsfield units (%LAA-950), local histogram-based measures of distinct CT low-attenuation patterns are more predictive of measures of lung function, dyspnea, quality of life, and health care use. These patterns are strongly associated with a wide array of measures of respiratory physiology and function, and most of these associations remain highly significant (P < 0.005) after adjusting for %LAA-950. In smokers without evidence of chronic obstructive pulmonary disease, the mild centrilobular disease pattern is associated with lower FEV1 and worse functional status (P < 0.005). CONCLUSIONS: Measures of distinct CT emphysema patterns provide novel information about the relationship between emphysema and key measures of physiology, physical function, and health care use. Measures of mild emphysema in smokers with preserved lung function can be extracted from CT scans and are significantly associated with functional measures.
Raul San  Jose

Dr. Raúl San José Estépar

Co-Director, Applied Chest Imaging Laboratory
Lead Investigator, Brigham and Women's Hospital
Associate Professor of Radiology, Harvard Medical School
Raúl is co-director of the Applied Chest Imaging Laboratory, lead scientist at Brigham and Women's Hospital and Associate Professor of Radiology at Harvard Medical School. With a background in Telecommunications Engineering from the University of Valladolid in Spain, Raúl has dedicated his career to advancing medical imaging techniques and applications.
 
399 Revolution Drive, Suite 1180,
Somerville, MA, 02145
p: 617 525-6227

Pages