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Abstract—Several techniques have been described in the literature in recent years for the reconstruction of a
regular volume out of a series of ultrasound (US) slices with arbitrary orientations, typically scanned by means
of US freehand systems. However, a systematic approach to such a problem is still missing. This paper focuses
on proposing a theoretical framework for the 3-D US volume reconstruction problem. We introduce a statistical
method for the construction and trimming of the sampling grid where the reconstruction will be carried out. The
results using in vivo US data demonstrate that the computed reconstruction grid that encloses the region-of-
interest (ROI) is smaller than those obtained from other reconstruction methods in those cases where the
scanning trajectory deviates from a pure straight line. In addition, an adaptive Gaussian interpolation technique
is studied and compared with well-known interpolation methods that have been applied to the reconstruction
problem in the past. We find that the proposed method numerically outperforms former proposals in several
control studies; subjective visual results also support this conclusion and highlight some potential deficiencies of
methods previously proposed. (E-mail: caralb@tel.uva.es) © 2003 World Federation for Ultrasound in Medi-
cine & Biology.

Key Words: 3-D ultrasound imaging, Irregularly sampled ultrasound data, Reconstruction grid extraction, PCA,
Adaptive Gaussian interpolation.

INTRODUCTION ing; and volume visualization and accurate volume esti-
mation may greatly enhance the diagnosis task.
Several 3-D US techniques have been reported in
the literature in the past few years. These techniques
can be coarsely classified as those derived from a 2-D
phased-array probe, and those that obtain a 3-D data

set from 2-D B-scans acquired in rapid succession

Three-dimensional (3-D) ultrasonic imaging is becoming
a widespread practice in clinical environments due to the
potential of applications based on 3-D representation.
Basically, the major drawback that physicians have to
cope with when traditional single 2-D B-scans are used
the need of mentally reconstructing the 3-D anatomy can

be naturally overcome using 3-D ultrasound (US) imag-
ing and appropriate further processing. But we may also
enumerate other interesting benefits of 3-D echography:
the spatial relationships among 2-D slices are preserved
in the 3-D volume, allowing an off-line examination of
scans previously recorded even by another clinician;
slices that cannot be acquired because of the geometrical
constraints imposed by other structures of the patient can
now be readily rendered by the so-called any-plane slic-
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while the probe is in motion. The former technique
employs a bidimensional array of piezoelectric ele-
ments and the volume is scanned by electronically
steering the array elements. The main drawback of this
promising technique is the limited field of view of the
existing probes. The latter technique makes use of
conventional 2-D US systems and a positioning sys-
tem. This technique includes both the freehand and the
mechanically-swept volume acquisition techniques.
Freehand has received increasing attention, especially
since the second half of the 1990s (Nelson and Preto-
rius 1997; Detmer et al. 1994), probably due to its
inherent flexibility and low cost compared with the
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Fig. 1. Schematic description of a freechand system. The posi-
tion parameters define the transformation between the receiver
coordinate system and the transmitter coordinate system.

3-D US probes, and it can be now considered as a
well-trusted technique.

In freehand imaging, a 3-D positioning sensor pro-
vides a measure of the position and orientation of the
coordinate system of a receiver (typically attached to the
probe) with respect to a fixed coordinate system located
at the transmitter. Figure 1 sketches the elements in-
volved in a freehand system. Each B-scan pixel, which is
initially measured in the coordinate system of the probe,
can be spatially located with respect to the fixed coordi-
nate system by means of a vector of position and a vector
of orientation that jointly comprise the six degrees of
freedom between two 3-D coordinate systems. A simple
affine transformation allows us to convert each position
in the image plane to a position in 3-D space. A critical
step is the calibration of the freehand system. Calibration
deals with the problem of finding the transformation
between the image plane and the receiver coordinate
system. The accuracy of the overall system critically
depends on this calibration stage, which, if successfully
carried out, provides an accurate registration of US im-
ages to 3-D space. Interesting papers have addressed this
issue in detail (Detmer et al. 1994; Prager et al. 1998).

The acquired data can be seen as a scattered distri-
bution of planes in 3-D space due to the total freedom of
the physician to perform the scanning procedure. Recon-
struction of a volume out of a number of planes with
arbitrary orientations (hereafter referred to as irregularly
sampled data) to end up with data in a regular grid is not
an obvious processing task. Although a real-time visual-
ization based on raw B-scans (without any prior recon-
struction) is possible and allows online diagnosis (Prager
et al. 1999) and, despite the existence of efforts of
authors (Treece et al. 1999, 2000, 2001) to do signal
processing directly on the raw data, a regular grid is still
needed to apply further processing with off-the-shelf
algorithms.

Consequently, this problem of volume reconstruc-
tion of US has been tackled by several authors (Barry et
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al. 1997; Rohling et al. 1997; Sanches and Marques
2000) in the past. All these studies focus on incremental
interpolation of the gaps between the slices, as well as on
the determination of the final intensity of a voxel when
several B-scans overlap on this voxel (this latter proce-
dure is known as compounding). Specifically, Rohling et
al. (1997) focus on spatial compounding with image-
based registration. The regular grid is filled using a
nearest neighbor (NN) approach and the solution they
propose for compounding is an average operation. Their
most outstanding contribution is the registration of B-
scans related to a baseline that is built from a quick pass
over the region-of-interest (ROI). The registration step is
intended to avoid blurring of misregistered structures due
to spatial compounding. Barry et al. (1997) follow an
inverse distance weighting (DW) scheme; each pixel that
falls within a circular area of a fixed radius (centered at
the voxel) contributes to the voxel value inversely to the
distance from the voxel to the pixel. Rohling et al. (1999)
provide a survey of well-known reconstruction methods
like voxel nearest neighbor (VNN), pixel nearest neigh-
bor (PNN) and DW interpolation; they also introduce a
new interpolation method based on radial basis function
(RBF). Finally, Meairs et al. (2000) apply a weighted
ellipsoid Gaussian convolution kernel to tackle the re-
construction of irregularly-sampled data.

All the above-mentioned studies, despite their unob-
jectionable quality, share the same pitfall: no attention is
paid to the details of the construction of the regular grid
(cuberille). However, we have found that this problem is
of paramount importance for further data processing and
storage. It is obvious that, before applying any interpo-
lation/compounding technique, the volume where the
data are going to be resampled must be defined. The
definition of the volume grid implies the selection of an
orientation and extent for the volume and the selection of
a voxel size. With respect to the former, on one side
clinicians (ultrasonographers) often prefer that the recon-
struction volume resembles as much as possible either
the original sweep or some anatomical predefined plane.
But, on the other side, it is needless to say that one of the
most outstanding difficulties of US imaging is that a
standard scanning policy does not exist; clinicians look
for the best viewing direction (also called insonation
angles) at will for each patient, attempting to avoid
annoying effects like shadowing. Therefore, the overall
scan may consist of several subscans from which a single
scanning direction (say, principal direction in the exam-
ination) may not be clearly defined.

The resulting situation can be made clearer with an
example: assume the physician has made a scan, consist-
ing of two subscans, the trajectories of which draw the
letter “x”. Assuming that two subscans suffice, then the
intersection of the segments of the “x” will comprise the
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ROI. However, no slice in any of these two subscans
gives a representative scanning direction. Hence, how to
create a regular volume in this example is not straight-
forward, due to the lack of a clear scanning direction,
unless an expert does provides additional information.
Moreover, for the example, any reconstructed regular
volume that contains all the pixels from all the B-scans
will probably be very large and it will contain a lot of
information-lacking voxels (i.e., voxels with an intensity
value imposed by the reconstruction process, and typi-
caly equal to zero). In this situation, we understand that,
if the direct destination of the data set is a computer, to,
for instance, perform a posterior registration with, per-
haps, other imaging modalities, the need for a compact
regular volume is high, so that common software can be
used to that end and the volume can be efficiently dealt
with by avoiding processing on a large number of irrel-
evant voxels. If, on the contrary, the direct destination of
the volume is a physician, that person will have to
patiently move through a large amount of slices with
only a few relevant pixels in two areas of the slices (those
that result from the intersection of the two tails of the “x”
with the slices), until the ROI is reached. That makes the
process of data analysis very cumbersome.

This paper aims at providing a theoretical frame-
work to the problem of US volume reconstruction from
freehand systems (i.e., at facing the problem of the
construction of the regular grid that best fits the data).
This problem comprises three subproblems, namely, 1.
the selection of the coordinate system of the reconstruc-
tion grid, 2. the selection of the extent of the recon-
structed volume, and 3. the determination of the voxel
size.

Principal component analysis (PCA) has been used
in this study to deal with the first of the aforementioned
subproblems. Considering the 3-D positions of the pixels
as samples of a population, we look for the coordinate
system that achieves the largest data variance in each
direction while being uncorrelated with the others. The
size of the reconstructed volume is pruned using the
eigenvalues information provided by PCA. Furthermore,
an adaptive Gaussian convolution kernel for dealing with
irregularly-sampled data is introduced and compared
with some well-known reconstruction techniques. We
will demonstrate the application of this reconstruction
method to in vivo data.

STATE OF THE ART

Notation and terminology

The position of a B-scan pixel is computed as a set
of homogeneous coordinate system transformations. Fol-
lowing the notation provided by Prager et al. (1998), the
overall transformation can be written as:

1 Preprocessing
« Position filtering.

o Position correction by image registra-

tion.

H

2 Volume grid construction
« Coordinate system: CTr computation.
« Size of the volume grid.

« Voxel size (grid spacing) computation.

H

3 Resampling process
« Bin-filling = compounding.

« Hole-filling = interpolation.

Fig. 2. Reconstruction process.

Cx = T T T x. (1

The position of every pixel in every B-scan, ‘x, is
transformed to a 3-D position into the C coordinate
system, “x. P is the coordinate system attached to every
B-scan; R and T are the coordinate systems of the posi-
tion sensor receiver and transmitter respectively and,
finally, C is the coordinate system of the reconstructed
volume. The transformation between P and R stems from
the calibration process. The second transformation be-
tween R and T is given by the position sensor’s records.
The last transformation is a custom transformation that
allows us to choose the best representation of the recon-
structed volume. The sub- and superscripts P, R, T and C
will be used in each variable/transformation to denote the
coordinate system that the variable/transformation is re-
ferred to.

Reconstruction: a survey

Figure 2 sketches the main steps of the reconstruc-
tion. A critical issue of every reconstruction technique is
the accuracy of the position measurements. This accu-
racy would ideally depend only on the finite resolution of
the position sensor but, in reality, electromagnetic con-
tamination in the environment where the measurements
are taken may distort the transmitter’s magnetic fields
(Leotta et al. 1997). The main drawback of electromag-
netic position devices is the susceptibility to interference
from metals and electronic devices. These circumstances
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can be alleviated with a proper setup of the inspection
room; however, it is almost impossible to completely get
rid of them. Assuming that the probe position varies
slowly between consecutive slices, smoothing the mea-
sures given by the position sensor contributes to the
suppression of high-frequency artefacts and, conse-
quently, the system accuracy can be enhanced.

The second step in the reconstruction process is the
selection of a coordinate system for the reconstructed
volume (i.e., the definition of “T) as well as the extent
of the volume and the grid spacing (voxel size). Al-
though every reconstruction process has to deal with this
issue somehow, to our knowledge, it has not been ex-
plicitly treated in the literature. Barry et al. (1997) pro-
pose the use of a Key US frame to define the axes of the
reconstruction volume. This Key frame is chosen by a
user and, typically, turns out to be one that is centrally
located and depicts a complete cross-section of the tissue
of interest. The volume axes are parallel to those of the
Key US frame and the origin of the volume is at the
center of the Key frame. Clearly this approach works
correctly when the B-scans are quasiparallel; however,
under other circumstances, for example, when the vol-
ume consists of several sweeps in different directions,
the selection of a representative Key frame may be
difficult to do, or such a representative frame may even
not exist; in addition, it will usually not be the best
solution in terms of minimizing the amount of data
needed to represent the scanned volume. As far as the
grid spacing is concerned, several authors pose the prob-
lem as a trade-off between resolution and size of the
reconstructed volume (Barry et al. 1997; Rohling et al.
1998; Leotta and Martin 2000) and the specific value is
chosen a priori.

The third step deals with the reconstruction itself
(i.e., resampling the information into a regular grid). We
have to cope with a well-known problem of scattered
data interpolation. A good survey about scattered data
interpolation was provided by Franke (1982). In our
domain, the reconstruction cannot be merely seen as an
interpolation problem; the process can be divided into
two stages, as suggested by Rohling et al. (1999) a
bin-filling stage and a hole-filling stage. The former is a
compounding operation that combines the information of
planes that intersect each voxel. The latter is an interpo-
lation operation because a value has to be inferred for the
voxels that have not been filled during the former step.
Although the interpolation can be carried out by several
methods (Franke 1982), the use of global methods' is not
feasible, due to the high dimensionality that the interpo-
lation procedure would suffer. Hence, it is necessary to

! By global method we mean that the interpolation is dependent
on all data points. They are theoretically the optimum.
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pose simple solutions to minimize the time and memory
requirements. Some well-known approaches are VNN,
PNN and DW (Rohling et al. 1999).

Now, we elaborate on each step shown in Fig. 2.

METHODS

Hardware and software

For probe tracking, an electromagnetic sensor
(miniBird, Ascension Technologies, Burlington, VT)
was used. This position sensor provides position (x, y, z)
and orientation («, 3, vy) information between the re-
ceiver and the transmitter.

US imaging was performed with a Hitachi EUB-
515. Images were digitized in RGB PAL format at 25
frames/s. Both the position sensor and US system video
output were attached to a Silicon Graphics O2 worksta-
tion. The US slices and position sensor measures were
matched using Stradx freehand 3-D US system (Cam-
bridge University 3-D Ultrasound Research Group, Cam-
bridge, UK; Prager et al. 1999). The calibration of the
system was performed using a single-wall phantom as
described by Prager et al. (1998). After the images and
position were recorded, the volume reconstruction was
performed with custom software on a 800-MHz proces-
sor Pentium III. The custom software was implemented
as a VTK (visualization toolkit) (Schroeder et al. 1998)
class. VTK libraries were also used for data visualiza-
tion.

Preprocessing

In this study, we have performed a non-causal FIR
filtering of the position and orientation data obtained
from the positioning system (after been synchronized by
Stradx). This simple procedure has drawn results at an
acceptable quality. The patient, however, was asked to
minimize motion and to refrain from breathing for the
short period of the scanning so as to minimize motion
artefacts. This paper does not focus on this issue; there-
fore, a simple procedure has been adopted. More sophis-
ticated procedures to assure the accuracy of the position
sensor measures (mainly based on registration ideas)
(Rohling et al. 1997; Rohling et al. 1998) have been
described in the literature.

Volume coordinate system

The selection of the coordinate system of the recon-
structed volume is one of the most critical steps in the
overall process of volume reconstruction. Under this
denomination, we include the following design issues:
the volume axes, the volume axes origin, the volume
extent and the size of each voxel. The elements involved
in this stage are depicted in Fig. 3.

The optimum coordinate system often depends on
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Fig. 3. Volume construction.

the application domain of the reconstructed volume;
however, two general requirements can be highlighted:
1. the volume grid should enclose as large an information
density as possible 2. the volume grid should have as
homogeneous an information density as possible
throughout the whole volume.

The first requirement accounts for the need for
having a small volume that depicts all the tissue infor-
mation presented in the original B-scans. The second
requirement attempts to reduce the number of interpo-
lated voxels; it would be risky to try to reconstruct areas
of a volume where there is a great lack of information
from the original B-scans, because such a reconstruction
may lead a clinician to confusion if a diagnosis was made
on a large area of interpolated data. Therefore, having a
formal method that deals with these concepts would help
to choose the main features of a volume reconstruction
method that best fits the ROI while retaining only the
relevant data from the original B-scans.

Volume axes. Principal component analysis (PCA)
is a statistical tool that is used to find the linear combi-
nation with the largest variance of a data population.
Typically, this tool has been used to reduce the number
of variables to be treated by discarding the linear com-
binations with smaller variances and retaining only those
with larger variances. In our case, the data population is
the 3-D position of every B-scan pixel. As is well-
known, if the purpose is to find the best way to get a
compressed volume, the Karhunen-Loeve transform, or,
in its discrete equivalent formulation, the Hotelling trans-
form or PCA, is the optimum solution (Jain 1989).

Formally speaking, let us suppose that the 3-D
position of each pixel in the transmitter coordinate sys-
tem, “x, is a random vector 7X of three components with
covariance matrix 3. The actual distribution of “X is
irrelevant except for the covariance matrix; however, if
X is supposed to be normally distributed, more meaning
can be given to the principal components. The key idea
of PCA is to determine the orthogonal linear transforma-

tion, ®, that transforms the original 3-D position into a
new space:

X PCA — X 2

so that the covariance matrix of “Xpe, is a diagonal
matrix, the components of which are the eigenvalues of
the data covariance matrix 3,. The columns of the trans-
formation ® turn out to be the eigenvectors of 3. The
straight meaning of the aforementioned transformation is
that the components of the transformed position, “Xpca,
are the ones that have maximum variance being mutually
uncorrelated. The fact of being uncorrelated will allow us
to trim the volume in one dimension with minimum
impact on the others. A complete formulation of the
mathematical background can be found in Anderson
(1984).

The covariance matrix 3, of our position data has
been estimated from the sample positions, Txp, for each
pixel in the transmitter coordinate system:

1

2:N—l

N
> (x, — %) ("x, — %)’ 3)
=1

p

where ¥ is the sample mean vector.

1 N
=y 2, @)
p=1

p indexes the set of pixels that contribute to the PCA
analysis.

Volume axes origin. The transformation @ only
defines a rotation to the transmitter coordinate system.
As a matter of fact, the columns of matrix ® are the
normalized axes of the reconstructed volume. In order to
completely define the transformation “T, a center for
the volume axes is needed. Although several approaches
can be undertaken, in this study, the origin has been
chosen to ensure that the coordinates of all the pixels are
nonnegative. The position of the origin ’x,, is deter-
mined component-wise as follows:

x,="x;, (%)
where i = 1,2, 3 indexes the vector components and p =
1 ...N indexes every pixel.
Finally, the affine transformation “T'; sought at this
stage is:
® Tx
C _ 0
77_[000 1] ©)
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Volume extent. The extent of the reconstructed
volume turns out to be an important issue that has not
been previously addressed in the literature. Some au-
thors propose a volume size that encloses all the
B-scans (Rohling et al. 1997; Meairs et al. 2000);
however, this approach is clearly inefficient because
outermost zones of the volume typically have a low
information density, and any interpolation attempt in-
creases the computation time and generates poor re-
sults. Henceforth, we will refer to this approach as the
bounding box approach.

PCA provides a powerful tool to trim the volume size
optimally without losing important information. Two facts
are essential: the position components are uncorrelated and
the pixel position variance for each dimension is known
(the eigenvalues of the covariance matrix 3). A simple
approach (hereafter referred to as the eigenvalue-driven
approach) is to look for the volume size that fits into the
bounding box and that retains the aspect ratio given by the
eigenvalues in each direction. As we said before, the eig-
envalues give an idea of how scattered the pixel positions
are with respect to the mean value of the population; there-
fore, volume dimensions should preserve this ratio.

Assuming that the pixel position is normally dis-
tributed, ’X = N (0, 3), an expression for the volume
size can be worked out. For a normal distribution, sur-
faces of constant probability density are ellipsoids:

x'3 7 'x=C. @)

The principal axes of this ellipsoid correspond to the
PCA of 7X (Anderson 1984). It can be found that the
length of the ith (i = 1, 2, 3) principal axis of the
ellipsoid with density C is:

li=2\AC, ®)

where A, is the ith eigenvalue of the covariance matrix 3.
The value of C can be calculated by integrating the
density function within a prism that contains the ellipsoid
defined by eqn (7) for a given probability r:

23
N (277)3/2()\1)\2)\3) 12

r

2

l<)‘1 X% X3>

re e a\ntoto

X NS \AzC\,)\zCe 2\M1 A2 A3 dxldxzdx3. (9)
0 0 0

Therefore, the length of the trimmed volume along co-
ordinate i that confines a given information density, say

r, is:

=2 \,/27)\,- - erfinv (r'®), (10)
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Fig. 4. Variation of volume length (/) with information density
(r) and data dispersion (A).

where erfinv is the inverse error function. Figure 4 shows
the variation of the volume length related to r and A. It is
clear that, for each coordinate, the greater the density of
information (r) and the data dispersion (A), the larger the
reconstructed volume length along this coordinate.

Voxel size. Voxel size computation aims at deter-
mining the grid spacing. On one side, it is obvious that
the greater the grid spacing, the lower the interpolation
requirements. On the other, the greater the grid spacing,
the greater the loss of resolution in the reconstructed
volume. Therefore, a satisfactory trade-off between the
two tendencies must be achieved.

The original B-scans have a resolution given by the
probe parameters; consequently, a reasonable criterion
would be to choose the greatest voxel size so that after the
B-scans are resampled into the volume, the planes of the
B-scans do not suffer any loss of resolution (aliasing).

For the sake of clarity in the exposition, let us reduce
the dimension of our problem. Instead of a volume, think of
a plane grid and, instead of the B-scans, think of lines
sampled with some sampling interval. Each sample would
be a pixel intensity value. Figure 5 depicts the situation that
is being posed; a 2-D object is sampled by means of lines.
Suppose that we have a single line parallel to the x-axis; in
this case, the maximum x-axis spacing would be the same
as the line spacing (A). With only this line, no information
would exist to find the spacing in the y-axis. As the line
rotates around the x-axis counterclockwise, the optimum
spacing would be reduced by a cos 6 factor, where 6 is the
angle between the line and the x-axis. If we continued
decreasing the spacing in the x-axis we would eventually
reach a null spacing (i.e., an infinite sampling frequency).
This is obviously nonsense, so we take, as a threshold for
finding the spacing in the x-axis, the value § = #/4. Similar
considerations can be made about the y-axis. In this case,
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Fig. 5. Voxel size calculation. A volume is represented by a

plane grid. A body is scanned by means of slices represented by

lines and intensity pixels by dots. The spacing between dots is
A.

the spacing increases with sin 6, with 7/4 < 6 < /2. An
actual situation encompasses several lines (indexed by i =
1, ... m) with orientations 6,. The above procedure can be
continued to each line, so the spacing, Ax and Ay, is finally
given by:

A, = min (Alcos®)|) if6, = w4 Vi=1,....m
A, =min (Alsing|) if6, > @4 Vi=1,... m.
(11)

The 6 = m/4 threshold has not been chosen at random.
Assuming that the scanned body space variability is fully
captured by the line resolution and that we have a high
enough line density, the worst case, as far as spacing is
concerned, arises when the lines lie parallel to the grid
diagonal.

The 3-D case has a similar expression from the
former discussion. It is more convenient to use a vecto-
rial notation though. The ith B-scan (out of, say, M
scans) is represented by of s' and ¢' (i.e., unitary vectors
that define the B-scan coordinate system). The volume
axes are given by X,y and z (see Fig. 3). Ay = Ajand Ay
= Aq are the B-scan resolutions for directions s’ and ¢,
respectively, Vi = {1, ..., M}. The grid spacing in each
direction can be written as:

A; = min, (A, <Kk',1>)

it & — st if | <s',1>| =cosw/4
WIM K =g if| < ¢,1>]| > cosm/4
V.o=1,....M (12)

where 1 denotes x, y or z direction and <, > denotes the
inner product.

3-D reconstruction

Most 3-D freehand systems use similar algorithms
to construct a regular volume after a volume grid has
been established. Basically, all these methods transform
each pixel position to a voxel position using eqn (1). Two
situations can arise; 1) several pixels fall onto the same
voxel; 2) several voxels are not intersected by any B-
scan and are empty.

To face these two situations, the reconstruction pro-
cess is divided into two subprocedures, namely, data
fusion (bin filling) and hole filling.

Data fusion. A single voxel may contain several
pixels due to different reasons. One of them is the fact
that the voxel size may be larger than the B-scan pixel
size. Another possibility is that each voxel may be inter-
sected by several B-scans. Both situations generate re-
dundant information that we have to manage somehow.
As is stated by Rohling et al. (1997), every freehand
system has to deal with compounding in some manner,
because it is almost unavoidable that the scan planes
intersect. A great activity has been carried out regarding
spatial US compounding (Burckhardt 1978; Wagner et
al. 1988) and, more specifically, in 3-D freehand ultra-
sound (Detmer et al. 1994; Rohling et al. 1998; Leotta
and Martin 2000).

Averaging has been traditionally the compounding
operation, because the speckle signal may be partially
filtered out; theoretically, the improvement in the signal
to noise ratio (SNR) may reach proportionality with the
number of samples that are averaged. However, when the
number of overlapping samples is small, the maximum
sample-compounding technique seems preferable
(Burckhardt 1978). Specifically, compounding pursues
three objectives: speckle reduction, tissue boundary en-
hancement and shadowing reduction. It has been proven
that averaging is an optimal way for speckle reduction;
nonetheless, its optimality is not so clear as far as bound-
ary enhancement is concerned. A tissue boundary exhib-
its different brightnesses depending on the insonation
angle, so the averaging operation may dramatically blur
the results. Burckhardt (1978) has shown that the maxi-
mum sample provides a similar improvement in SNR for
a small number of pixels falling into the same voxels,
and allows a clear boundary enhancement and shadow-
ing reduction.

Hole filling. The hole-filling step aims at finding a
value for those voxels that have not been filled in the
data-fusion step. This present stage is an interpolation
step and many of the attempts have focused on low-order
interpolation. Given the great amount of data available,
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NN approaches seem to efficiently tackle the problem.
The NN approach involves sequencing through the reg-
ular volume (i.e., through the original B-scans) and as-
signing to the empty voxel the value of the closest pixel.

In this paper, however, we have used an approach
based on a basis function interpolation (Franke 1982)
similar to the one proposed by Meairs et al. (2000). A
Gaussian convolution kernel is placed on each voxel
after the data-fusion step and the voxel value is com-
puted as a weighted sum of all the voxels filled in the
former step. Meairs et al. (2000) propose an ellipsoidal
kernel, the main axis of which is oriented along the frame
normal of the current image plane to avoid a smoothing
of the image data in the horizontal direction; however,
nothing is said about the selection of the variance of the
Gaussian kernel. Moreover, it is not clear what the ori-
entation of the image plane is for those voxels which turn
out to be unfilled in the data fusion step.

Our approach is based on a spherical Gaussian
kernel, the variance of which is a function of the variance
of the intensity of the nearby pixels. This is an adaptation
to the US case of what has been called sigma filter
elsewhere (Lohmann, 1998). The variance of the inten-
sity grey—scale images carries information about the ex-
tent of speckle formation (Dutt and Greenleaf, 1996). A
speckle formation-driven interpolation allows us to de-
tect likely structures out of the completely resolved
speckle zones, reducing the smoothing effect of the
Gaussian interpolation kernel by means of sharpening
the kernel shape. Dutt and Greenleaf (1996) came up
with a normalized variance-dependent parameter, f, that
tracks the statistic of the speckle image:

’7TZD2
fzm, (13)

where D is a compression constant and o7 is the image
variance. The statistical analysis carried out by the au-
thors states that f parameterize scatterer densities; low
densities result in fully resolved scatterers (f = 0) and
large densities result in fully formed speckle (f = 1). The
image variance, o7, can be estimated using the voxels
filled during the bin-filling stage. The compression con-
stant D stems from the logarithmic compression that the
ultrasonic signal envelope must undergo to fit into the
display’s dynamic range. The authors propose a deter-
ministic approach to resolve this parameter, although
new blind inverse methods for gamma correction can be
also applied (Farid 2001).

In this work, we have used f as a mapping parameter
between the image variance and the kernel variance.
Assuming that an interval of acceptable variances (o7

min>
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Fig. 6. Variation of Gaussian kernel variance vs. image vari-

ance. To preserve the structures in the reconstructed volume,

the kernel variance decreases as the image variance increases.

The intensity grey-scale value has been normalized between [0,

1] and a compression constant D = 0.22 was assumed. The

desired kernel variances were set to lie within the interval o2,
= 0.796 and o2, = 10.

max

o?,..) can be defined, the adaptive variance of the Gauss-
ian kernel, o2, is worked out as:

0-3( = O-ﬁ‘lin + (O-Znax - U?nin)f’ (14)

The image variance, o7, is estimated using the vox-
els filled during the bin-filling step. This could be inter-
preted as an unsharp masking filtering over the kernel
variance driven by the underlying speckle pattern. Figure
6 shows the variation of the kernel variance as the image
variance increases. For computational purposes, instead
of building the exact kernel for each variance, a loga-
rithmic quantification of the former plot is devised.
Hence, a bank of precomputed kernels is used to speed
up the interpolation process. As a rule of thumb, we
choose the size of the Gaussian kernel, k, so that it
encloses 98.76% of the area within the Gaussian curve
(i.e., Trucco and Verri 1998).

k=50 (15)

The kernel function is then sampled at unitary distances
and the values are normalized to maintain the DC com-
ponent after the filtering.

RESULTS

A set of four US sweeps has been used to test the
reconstruction process. US volumes from a thyroid and a
liver were available from the Cambridge University 3-D
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Ultrasound Research group. A kidney and a fetus® have
been scanned under our supervision. All the scanned
volumes are single-sweeps, except for the fetus case,
which is formed by two overlapping sweeps.

Evaluation of the volume grid construction procedure

Evaluating the PCA process capability to define a
coordinate system is a difficult task, due to the lack of a
ground truth orientation; it is our opinion that there could
be as many optimum orientations as ultrasonographers
were asked to provide one, so the orientation given by
other methods, like the Key-frame approach, could be
equally valid. However, more objective differences be-
tween methods may arise when a trimming of the output
volume is carried out to process only the relevant areas of
the scanning. In this case, as we will show, the effec-
tiveness of the trimming process is highly dependent on
the chosen coordinate system.

Evaluation methodology. We will analyze five dif-
ferent coordinate systems and two different trimming
procedures. About coordinate systems, these will be the
PCA proposed in this paper, three choices of the Key-
frame approach proposed by Barry et al. (1997) and the
transmitter coordinate system given by the positioning
system (hereafter denoted by 7). The three choices of
Key frames will be the B-scan in the middle of the
recorded sequence, the B-scan located right at the end of
the first quarter of the sequence starting from the begin-
ning, and the B-scan located at the end of the third
quarter from the beginning. These methods will be re-
ferred to as KF#2Q, KF#1Q and KF#3Q, respectively. In
the examples, the numbers after the # sign will be the
actual slice number of the Key frame within each dataset.
About trimming procedures, Key frame and T will be
trimmed with a deterministic method described later in
this subsection, and PCA will be trimmed both with the
eigenvalue-driven procedure and with the deterministic
method. PCA methods will be referred to, respectively,
as PCA — eig and PCA — det.

For each data set, a careful delineation of the ROI
has been carried out, assisted by the supervision of an
expert using the 3-D slicer (Gering et al. 1999). The
resulting ROIs will be taken as our ground truth (i.e., as
the target to be preserved in the reconstructed volume).
The best procedure (both in terms of coordinate system
and of trimming procedure) will be that that most com-
pactly comprises the whole ROI (i.e., the method with
which, as soon as the whole ROI is captured within the
reconstructed grid, the physical volume® of such grid is

2 The corresponding author’s first son!

3 We will used interchangeably the terms reconstructed grid and
reconstructed volume. When we need to refer to the size (in cubic units)
of the reconstructed volume, we will use the term physical volume.

the least). For illustration purposes, Fig. 10 shows a 3-D
model of the ROI with the original B-scans superim-
posed for each of the four datasets that will be used in the
paper.

To monitor the trimming procedure, we will obtain
ROC-like curves (Metz 2000), in which the magnitude in
the horizontal axis will be the physical volume of the
reconstructed grid (V) and the magnitude in the ver-
tical axis will be the portion of the ROI captured by the
reconstructed grid. Such a magnitude will be hereafter
referred to as captured ROI and denoted by Vi, Both
axes will be normalized by the physical volume of the
ROI (Vgop), for the curves of the four datasets to be
comparable irrespective of the actual size of the ROI.
Such curves will be referred to as ROC curves, for
simplicity. The physical volume V4 for which Vi =
Vror Will be hereafter referred to as optimal grid physical
volume and denoted by Vpy-

To apply a trimming algorithm to those coordinate
systems that are not based on an eigenvalue computation,
a deterministic approach has been applied. This deter-
ministic trimming approach has been introduced to com-
pare the PCA with the Key frame. The chosen determin-
istic method follows an ad hoc scheme, where the length
of each axis is reduced based on the deviation of the
center of the volume bounding box from the center of
mass of the data. Departing from the bounding box
limits, each dimension of the bounding box is trimmed
according to a term, dj, which controls the extent of the
trimming process in this direction as a function of the
deviation of the center of mass with respect to the bound-
ing box limits for the axis. Everything is weighted by a
term p that is used to control the whole process. In our
particular implementation, the length of the trimmed
volume along the jth coordinate (j = x,y,z) is given by:

l;=[(BB; — mc)(d; + 0.5)
- (bbj - ij)(l - dj)] *p, (16)

where BB; and bb; are the respective jth coordinates of
the lower and upper bounding box extremes, and mc; is
the jth coordinate of the center of mass. p is a coefficient
that is used to control the trimming strength, and d; is a
parameter that accounts for the deviation from the center
of mass following an arctangent shape. Specifically:

4+ s mc; — bb; 1
m arctan B Bj — b bj 3

d; = P GY)

d; is bounded over the interval (0, 0.5) as mc; tends to bb;
or BB;.
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both

Fig. 7. Study of the evolution of the Vio; with V.

rid?
normalized by Vi, (see main text for definitions). F%ur cases
have been analyzed: (a) thyroid gland, (b) liver, (c) kidney, and
(d) fetus. For each case, six methods have been studied,
namely, PCA with eigenvalue trimming method, PCA with
deterministic trimming method, Key frame with deterministic
trimming method (the chosen Key-frame sequence number is
used to label each case), and T coordinate system with deter-
ministic trimming method. The vertical lines show the point at
which each chosen coordinate system starts to enclose the ROI.

Coordinate system performance. Figure 7 shows the
ROC curves that result from the different methods for the
four datasets. These plots depict how fast the recon-
structed volume comprises the ROI as a function of the
growing physical volume of the reconstructed grid, as we
increase either r or p, as convenient for the correspond-
ing trimming method. Needless to say that the best
procedure will grow faster in the vertical axis than the
others, as they all move rightwards along the horizontal
axis.

It can be seen that the PCA with eigenvalues
method clearly outperforms the others in three of the four
datasets (Figs. 7a, c, and d). It is only for the liver (Fig.
7b) that the proposed method it is not the best, even
though differences are almost negligible. This can be
explained very easily by noticing that, for this dataset,
the ROI comprises almost the whole sequence (see Fig.
10b). If this is so, PCA does not add any particular
advantage. On the other hand, if we focus on the fetus
case (Fig. 7d), where two overlapping sequences (with
different scanning directions) have been acquired to
cover the whole fetus (see Fig. 10d), our method
achieves the largest difference with respect to the other
methods. The fetus case reveals the Key frame difficulty
to choose the proper B-scan that clearly compiles the
best trajectory. Moreover, the advantage of the eigen-
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Fig. 8. Comparison between the V, and V,5py, (see main text
for definitions) for (a) thyroid, (b) liver, (c) kidney, and (d)
fetus.

value with respect to the deterministic trimming methods
is revealed, for this case, in terms of least physical
volume enclosing the ROI, given the large amount of
data that can be considered outlier (i.e., outside the ROI).
Similar conclusions can be drawn for the thyroid case
(Fig. 7a), where the ROI is defined only within a subset
of the dataset (see Fig. 10a), making the eigenvalue
trimming method the best choice.

A deterministic trimming turns out to be a fairly
poor solution, given that, though we are able to reduce
the volume, there is no knowledge about how to perform
this reduction depending on the axes and pixel distribu-
tion in the 3-D space (i.e., how to trim the volume,
preserving the ROI as much as possible for a given
trimming ratio).

Another issue that we have addressed in our study is
the relation between the least physical volume of the
reconstructed grid V4 that comprises the bounding box
(say, Vgia = Vpp) and Vgpy. Fig. 8 shows this relation
for each case and each coordinate system considered.
The bargraphs reflect how worthy it is to use a trimming
method in terms of the amount of data needed to enclose
the ROI. Also, it is worth noting that PCA is not the
method that achieves the least physical volume when the
whole bounding box is required. That makes sense if we
take into account that PCA tries to choose the best
orientation to be as insensitive as possible to portions of
B-scans not within the ROI; consequently, any attempt to
enclose those B-scans will result in a greater volume than
with other orientations that implicitly use the knowledge
of the scanning policy (if it exists) as, for instance, the
Key-frame approach. As we stated in the introduction, as
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Fig. 9. (a) Vror normalized by Vi vs. r for each case. (b) Vyiq
normalized by Vi vs. r. The horizontal dashed line represents
the level where the trimming algorithm reaches V. Note that,
the closer the scanning trajectory to a straight line, the faster
(with respect to r) Vg is reached and, from that value r on, the
theoretical trimming box is larger than the bounding box. It is
obvious that the tails of the assumed Gaussian distribution does
not hold any real voxel information.

far as a human observer is concerned, PCA is not the
preferable option if the intention is to preserve all the
data and the observer is willing to scroll through irrele-
vant B-slices. Our PCA approach becomes relevant when
the trimming is carried out; in that case, as we have
shown, our method outperforms the Key-frame approach
in terms of physical size of the volume.

The evolution of the eigenvalue-driven physical
volume with r is shown in Fig. 9. Figure 9a shows the
evolution of the ratio Vo, / Vo for each case. From this
plot, it can be seen that an interval ranging from r = 0.7
to r = 0.9 covers the ROI for the cases under study
without adding information-lacking regions. For illustra-
tive purposes, Fig. 10 shows the resulting reconstructed
volume for the eigenvalue method. The original freehand
B-scans are shown, as well as the boxes corresponding to
the bounding box, r = 0.9, r = 0.8 and r = 0.7 (see
figure caption for details). It is also worth analyzing the
evolution of the V,,;q normalized by the Vjg. This mea-
sure sheds light upon the sensitivity of the trimming
approach with respect to the density of information r that
we want to retain. Figure 9b plots this measure. The
thyroid case turns out to be the most sensitive because its
normalized volume quickly increases when r gets closer
to /. On the other hand, the fetus is the least sensitive
case. The conclusion that can be drawn is that, the greater
the deviation of the scanning trajectory with respect to a
straight line (either by several sweeps or misalignments
of the original B-scans), the greater the bounding box
and, consequently, the proposed trimming approach be-
haves more effectively.

Therefore, the PCA coordinate system and the eig-
envalue driven approach constitute the basis of a formal
framework for building and trimming at controlled dis-
tortion levels a regular volume out of irregularly sampled
data. Results clearly show that the volume sizes so ob-

Fig. 10. Eigenvalue-driven trimming performance. The original
B-scan planes, bounding box (outer blue) and boxes for r =
09,r = 0.8 and r = 0.7 (black, green and inner blue, respec-
tively) are shown for the volumes (a) thyroid gland, (b) liver,
(c) kidney, and (d) fetus. The difference between the bounding
box volume and the trimmed volume are fairly clear.

tained are considerably smaller than those obtained by
reported methods when the scanning trajectory is not
correctly represented by a single slice within the dataset.

Voxel size. The selection of the voxel size is based
on a criterion that retains the B-scans resolution into the
volume grid. Table 1 shows the voxel sizes for different
B-scan sequences and for different coordinate systems.
The original B-scan resolution is also shown. For all the
cases, it can be shown that the output resolution is
bounded by the input resolution and a 1/2 factor of the
input resolution. The upper bound is almost achieved in
uniform scans like the thyroid case and the lower bound
is more likely in several sweeps like the fetus case.
Although the lower bound could be proposed as the
general solution that guarantees our criterion, the pro-
posed method tries to relax this lower bound by choosing
the optimum for each particular case.

Evaluation of the resampling procedure

Different approaches can be used to evaluate the
quality of the reconstruction process (bin- filling and
hole-filling). For instance Meairs et al. (2000) state that
one of the best ways to judge the quality of 3-D US
volume acquisition and reconstruction is through volume
visualization using rendering techniques. However, we
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Table 1. Volume voxel sizes using the proposed method for the four datasets used in the paper

Key-frame PCA

Vol. voxel size

Vol. voxel size

B-scan pixel size (mm/pixel) (mm/pixel) Vol. dimensions (mm/pixel) Vol. dimensions
" xy2)" (ry2h

Thyroid 0.08713 0.08703 368 0.08713 672
0.08913 0.08713 522 0.07923 519

0.08713 595 0.08701 373

Liver 0.27986 0.27804 549 0.27658 578
0.28526 0.27353 502 0.27499 527

0.27986 391 0.27986 376

Kidney 0.26138 0.25967 635 0.25774 674
0.28978 0.26138 556 0.26138 586

0.26138 319 0.26138 297

Fetus 0.32335 0.22937 1127 0.25066 1216
0.35377 0.25140 1043 0.22899 1433

0.25140 1223 0.22946 1159

The output voxel size and the volume dimensions are shown both for the PCA and the Key-frame methods. The Key-frame corresponds to the
middle B-scan of the recorded sequence. The volume dimensions correspond to Vg for the given coordinate system.

believe that this approach remains subjective and that the
visual cues associated to each particular rendering tech-
nique can potentially disguise pitfalls of the reconstruc-
tion method. One can even change the spatial position of
the triangles in a triangle mesh according to different
criteria to get a better visualization (San José et al. 2001),
even though the original volume remains unaffected.

Another possibility could be to build a phantom in
which the material had known acoustic properties so that
values of the B-scan could be anticipated by analytical
calculations and compared with the actual B-scans. This
possibility, however, requires an effort that can be cir-
cumvented by other methods.

In this study, we have followed the testing approach
introduced by Rohling et al. (1999). The main idea is to
evaluate the ability of the reconstruction method to pre-
dict the intensity values at the locations where the orig-
inal data have been removed. We will use the thyroid
gland case as a figure of merit. This examination presents
a regular enough sweep to allow an easy interpretation
without any lack of generality. A B-scan near the middle
of the sweep is selected. A Key-frame approach is used
to align the volume coordinate system using the chosen
B-scan. The voxel size is set so that x and y axes have a
resolution equal to the B-scans. Therefore, the selected
B-scan falls perfectly into voxels in the volume grid. To
preserve this property, a voxel size in z should be prop-
erly chosen. The distance between the centers of the
adjacent B-scan from the key B-scan is used as the voxel
size in the z direction.

A percentage of pixels is randomly removed from
the B-scan, creating holes of various sizes that should be

interpolated. The rest of the pixels are used in the inter-
polation process to fill in all the voxels in the voxel array.
The interpolated value is compared with the removed
pixel value to assess the reconstruction accuracy. The
average of the absolute difference between the interpo-
lated and the original values over all missing values is
used as a goodness measure

1 L
V=72 lpi—cl. (18)
i=1

where p; is the original pixel intensity value and c; is the
voxel interpolated intensity value aligned with p;. L is the
number of discarded pixels that need an interpolation
value. V also includes the quantization error, because the
output values are stored with integer precision.

The tests have been carried out with six different
percentages of removed data: 25%, 50%, 75%, 100%,
300% and 500%. The tests corresponding to 25%, 50%,
75% and 100% remove data from the chosen B-scan.
Percentages over 100% mean that additional pixels from
the two adjacent B-scans are removed. Specifically, for
the 300% test, all the pixels from the chosen B-scan and
the two closest adjacent scans to it have been removed.
Evaluating the 300% and 500% accurately requires an
examination with slices almost parallel and with one
sweep so that the missing voxels are mostly aligned with
the ground truth removed and a reliable comparison can
be carried out. This is the reason for the choice of the
thyroid case to perform the test. A kernel size of 3 X 3
X 3 voxels has been used for the smallest percentages.
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Fig. 11. Grey-level error for the thyroid case. Four well-known

interpolation methods (VNN, PNN, DW, and Gaussian convo-

lution kernel) are compared with the proposed method (adap-
tive Gaussian convolution kernel).

For the 300% and 500% tests, kernel sizes were 5 X 5 X
Sand 7 X 7 X 7 voxels, respectively. A 7 X 7 X 7 mask
has been used to estimate the image variance that drives
the adaptive Gaussian interpolation procedure.

Figure 11 plots the results for some well-known
methods and the one proposed in this study. The results
show that a Gaussian approach performs much better
than well-known methods, as long as the percentage of
data removed is below a certain threshold. Focusing on
results below 300%, the method introduced in this paper
clearly outperforms former proposals, closely followed
by a traditional Gaussian interpolation. For percentages
over 300%, the great lack of information makes those
techniques that do not underestimate farther pixels, like
PNN, behave better in terms of the error metric consid-
ered.

For illustrative purposes, Fig. 12 shows the set of
interpolated images for the 100% case, (i.e., when the
whole slice has been interpolated using out-of-plane
information for the methods discussed in the paper)
together with the original image. The figure shows that
both DW and PNN tend to oversmooth the data. About
the other three methods, no important differences can
be found; only minor comments can be made. For
instance, VNN seems slightly to overemphasize the
texture patterns. This is the case within the upper
rectangle drawn in the original image. With respect to
the Gaussian interpolators, as we said, their behavior
is very similar; however, the nonadaptive version
tends slightly to smooth the texture patterns. This is
the case for the area within the rectangle located in the
middle of the original image. These comments, how-

Fig. 12. Thyroid B-scans interpolated by several methods. All
the images show the result of the interpolation for a 100%
percentage of data removed. From left to right, row 1: the
original slice (before data removal) and it is the ground truth
VNN, PNN; row 2: DW, Gaussian and adaptive Gaussian.

ever, do not lead to a clear preference for one partic-
ular method.

The second example highlights the main differ-
ences of the methods; Fig. 13 shows a slice of the
reconstructed volume for the case of the kidney data-
set. The PCA-based proposed method has been used to
work out the reconstruction volume grid and the trim-
ming algorithm has been set up with » = 0.70. The
VNN method computes the nearest pixel in a spheri-
cally-shaped local neighborhood with radius R = 5
voxels. For the PNN and DW methods, the kernel size
has been set up to 7 X 7 X 7. For the adaptive
Gaussian method, we have chosen o .. = 0.8 and o

min max

= 1.4 as the desired marginal deviations. The kernel

Fig. 13. Kidney B-scans interpolated by several methods. From
left to right, row 1: PNN, VNN, DW; row 2: Gaussian, adaptive
Gaussian.
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variance will be bounded between these two values,
(see eqn (14)). Then, the adaptive Gaussian kernel size
is computed using eqn (15). As before, PNN and DW
tend to oversmooth data. Both Gaussian kernels show
a smoother behavior than VNN, especially the non-
adaptive version, which creates a blurry image as
compared with the other two. VNN shows a more
textured pattern, as in the previous example. However,
the price to pay is the presence of misalignments in the
resampled image, due to the overlap of the original
slices. This is particularly clear in the lower contour of
the kidney, where, for an important part of it (enclosed
within the rectangle shown), a textured diagonal pat-
tern has been superimposed, distorting its presence
and making it difficult to be traced. The adaptive
Gaussian method turns out to be the one that shows the
best trade-off between hole-filling capabilities and
blurring. Misalignment artefacts are not visible. Con-
sequently, although these misalignments are common
to all the methods, kernel-based methods can more
efficiently deal with them.

CONCLUSIONS

In this paper, a theoretical framework for the
reconstruction of a regular US volume out of irregu-
larly-sampled volume data has been proposed. We
have focused on two main problems, namely, how to
create a regular volume grid and how to find the value
of each of the voxels in the grid. With respect to the
former, the main contribution of the paper is the
proposal of a well-known statistical tool to find the
optimum coordinate system; in our experiments, we
have shown that the method proposed in the paper
encloses the ROI with a smaller overall physical vol-
ume than other methods previously proposed in those
cases that the scanning trajectory differs from a pure
straight line; as a matter of fact, we have shown that
the greater the reduction of the volume size of our
method, the greater the deviation of the scanning
trajectory with respect to a straight line. In addition,
we have proposed a method to find the size of each
dimension of the voxel so as to reduce aliasing effect
while maintaining low storage requirements. With re-
spect to the second problem, we have proposed an
adaptive Gaussian kernel to carry out the interpolation
procedures, and numerical results show that this pro-
cedure achieves the minimum distortion for the data-
sets used in the paper. In addition, graphical results
show that this method achieves a moderate blur while
avoiding misalignments artefacts that stem from the
superposition of slices. Although more extensive data
analyses should be done to infer possible correlations
between the scanning trajectories and the appropriate
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value of the parameter r to perform the trimming, it is
our belief that this paper shows a formal methodology
to reconstruct volumes from freehand US scanning
while maintaining moderately low processing and
storage needs. The graphic tools here developed (an
example of which is shown in Fig. 10) allow practi-
tioners to fine-tune the final volume size at will very
easily.
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