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ABSTRACT
We present a fully automatic computational vascular mor-
phometry (CVM) approach for the clinical assessment of pul-
monary vascular disease (PVD). The approach is based on the
automatic extraction of the lung intraparenchymal vasculature
using scale-space particles. Based on the detected features,
we developed a set of image-based biomarkers for the assess-
ment of the disease using the vessel radii estimation provided
by the particle’s scale. The biomarkers are based on the in-
terrelation between vessel cross-section area and blood vol-
ume. We validate our vascular extraction method using sim-
ulated data with different complexity and we present results
in 2,500 CT scans with different degrees of chronic obstruc-
tive pulmonary disease (COPD) severity. Results indicate that
our CVM pipeline may track vascular remodeling present in
COPD and it can be used in further clinical studies to assess
the involvement of PVD in patient populations.

Index Terms— Scale-space, vessel segmentation, biomark-
ers, pulmonary vascular disease, COPD, CT

1. INTRODUCTION

It is estimated that 30 to 70% of subjects with advanced
chronic obstructive pulmonary disease (COPD) have clini-
cally significant pulmonary vascular disease (PVD). PVD is
in part mediated by vascular remodeling including inflam-
mation and endothelial dysfunction present even in smokers
with normal lung function [1]. Although histopathology can
be used to assess vascular remodeling in small sample sizes,
volumetric computed tomography (CT) offers an unique op-
portunity to explore PVD based on vascular morphometry.

Under a computation vascular morphometry paradigm,
the interplay between vessel cross-sectional area, blood vol-
ume and vessel lengthening are factors that can help to char-
acterize PVD. Multiple approaches have been introduce for

This work has been supported by grants from the National Institutes of
Health (K25 HL104085 to Dr. San José Estépar; K23 HL089353, to Dr.
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the extraction of pulmonary vasculature based on either fea-
tures from the Hessian [2, 3, 4] or waterfront propagation [5].
Although these techniques show acceptable performance they
require additional steps for the quantification of vessel diam-
eter. Additionally, accurate tree extraction for smaller vessels
and robustness to noise remain as important issues. More-
over, the evaluation of vascular extraction algorithms remain
a difficult challenge due to the complexity of the tree and the
lack of labeled volumes.

In this paper, we present a technique for automatically
extracting vessel location and caliber based on scale-space
particles. Scale-space particles leverage the well-known the-
ory of linear scale-space to localize features described by the
Hessian. Unlike previous approaches, our technique has the
unique ability to directly sample the vessel centerline and pro-
vide vessel size by exploiting the relationship between scale
and physical radius. This is achieved in a computationally ef-
ficient framework inherent in the particle system. We exhaus-
tively evaluate our algorithm’s performance using simulated
phantoms that exhibit complexity resembling real vasculature
and thus demonstrate its effectiveness for CVM. Another ma-
jor contribution of this work is also the introduction of a set
of biomarkers for the assessment of PVD that are based only
on information provided by scale-space particles.

2. METHODS

We start first by introducing the scale-space particle approach.
We then derive the relationship between scale and vessel radii
that can be used to obtain physical morphometric measures.
Finally, we present the biomarkers that have been developed
for the assessment of PVD.

2.1. Vessel detection by scale-space particles

Our vascular morphometry pipeline is based on scale-space
particles [6]. Scale-space particles offer the possibility of ef-
ficiently exploring an image region for features, in our case
vessels, that can be described by the Hessian. We detect ves-
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sels as intensity ridge lines, using the ridge line definition
as a point where the gradient is orthogonal to the two Hes-
sian eigenvectors associated with the smallest (most negative)
eigenvalues λ3 < λ2. Within the context of our particle sys-
tem, points are moved onto ridge lines by repeated Newton
optimization, which is completed at every energy-minimizing
iteration of the particle system. To ensure that vessels of all
radii are detected, we initialize the particle system with a uni-
form dense sampling of particles across the four-dimensional
domain (three spatial axes and one scale axis).

The particle system solution is computed iteratively to
minimize the system energy, which is a sum of inter-particle
energy and energy associated with a particle’s location within
the image domain. The inter-particle energy is a quartic poly-
nomial with a tunable potential well, chosen to quickly induce
regular sampling. The potential well also serves the purpose
of making particle population control (adding particles to fill
gaps in the vessel sampling) part of the same over-all energy
minimization that moves particles into a uniform sampling.
Particles are removed when the strength of the ridge line fea-
ture (as quantified by the middle Hessian eigenvalue λ2) falls
below a pre-specified threshold that depends on image con-
trast. Following the general guidelines of [6], particle system
computation proceeds in three steps: densely and uniformly
sampling the two-dimensional manifold swept out in scale-
space by the ridge lines, moving points to the scale of maxi-
mal feature strength, and then redistributing points to create a
uniform vessel sampling.

2.2. Vessel sizing

Vessel radius can be analytically related to the scale by find-
ing the value of σ that maximizes the multi-scale strength
function, R(σ) = σ2λ2(σ), at the vessel center. Assuming
that the vessel cross-section can be modeled as a disk with
constant intensities inside and outside and that the CT point
spread function behaves as a Gaussian of standard deviation
σ0 , the signal intensity is defined by the convolution integral
as

fσ(x, y) =

∫ r

−r

∫ √
r2−v2

−
√
r2−v2

Gσ(x+ u)Gσ(y + v)dudv, (1)
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1√
2πσ

e−
x2
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∫ x
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At the center of the disk, the second order derivative in any

direction will also be equal to λ2, so
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The term
∫ r
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√
r2 − v2dv can be easily computed with a

change of variable and is equal to πr2

2 , so Rσ(0, 0) =

−r2

2σ2 e
−r2

2σ2 which has a maximum at r =
√
2σ. Since our

model integrates an initial Gaussian convolution of σ0, we
finally have the following relationship between the detected
scale, σ, and the radius of the structure at the center of the
cross-section given by

r =
√
2
√
σ2
0 + σ2. (6)

2.3. Biomarkers Computation

Each particle has a given cylindrical volume corresponding to
the cross sectional area defined by its scale and the length of
the sampling given by the location of the potential well. From
this, the distribution profile of blood volume as a function of
the vessel cross sectional area can be computed and the blood
volume for vessels less than 5 mm2 (BV5) and larger than
10 mm2 (BV10) can be calculated by integration of the dis-
tribution profile. The limits 5 mm2 and 10 mm2 define the
transition between distal and proximal vasculature as previ-
ously defined in the literature [7]. Those quantities normal-
ized by the total intraparenchynal blood volume can serve as
CT-based biomarkers of vascular remodeling.

3. RESULTS

Evaluation framework. We designed two experiments to
assess how accurate we can capture and quantify the vascu-
lar tree morphometry. The first experiment aimed at testing
the validity of eq. (6) using a circular cone phantom with a
linear radius ramp from 0 pixels to 8 pixel units simulated
for different scanner models (Fig. 1a). The scanner point
spread function (PSF) was simulated by means of a convo-
lution with a Gaussian function with standard deviation σb

and noise was simulated as additive Gaussian noise with stan-
dard deviation σn. The background was set to -800 HU and
the cone density to 100 HU to capture the nominal range of
background/vasculature density in the lung. The cone was
sampled in a high resolution grid and down-sampled with a
windowed sinc resampling kernel into a 51x51x340 grid.

The second experiment was based on the Vascusynth sim-
ulator [8]. Vascusynth was used to generate trees of multi-
ple complexities by changing the number of terminal nodes
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from 5 to 1000 within a volume of 100x100x100 voxels of 0.6
mm. Lung parenchyma was simulated by means of a Gaus-
sian process with mean -800 HU and standard deviation of
150HU spatially correlated with a Gaussian kernel with std
1.5 pixel. The vessel maximum density was set to 100 HU.
Gaussian noise of std=20HU was added to the final image
to account for the noise levels typically encounter in high-
dose CT scans. The segmentation quality was assessed by
comparing the results with the graph tree produced by Vas-
cusynth. Particle points that were less than 0.6 mm to the
closest ground truth point were true positive results, other-
wise the points were marked as false positives. False negative
points were computed by finding the ground truth points that
did not have a particle point at a distance less than 0.6 mm.

For all the experiments, scale-space particles were run
with the same experimentally selected parameters. The
threshold on λ2 was -20, the number of iterations for each
step were 80, 20 and 60 respectively. The energy blending
parameters as defined in [6] were α = 1, β = 0.7 for step 1,
α = 0, β = 0.5 for step 2 and α = 0.25 and β = 0.25 for
step 3. These values achieved the desired repulsion/attraction
behavior for each step. For all cases, the scale-space particles
were initialized by seeding on a initial mask obtained by an
upper threshold of the original image with value -500HU.

Radius estimation validation. Scale-space particles
were run in the simulated cone volumes and the relative es-
timation error between the real radius at the location of the
particle (given by its z-coordinate) and the estimated radius
based on eq. (6) was computed for different scanning sce-
narios (Fig. 1). Fig. 1b shows that the error has two linear
sections with a breaking point corresponding to the resolu-
tion of the CT scanner given by the width of the PSF. Even
for the ideal imaging system, σb = 0, there is an inflection
point at 1 pixel radius reflecting the Nyquist limit. Note that
particles were not places at cone sections with low radius as
σb increases suggesting the limited capturing range as the
PSF is smoother and smoother. Fig. 1c shows the error for
different noise levels. It is interesting to note the robustness
of scale-particles to Gaussian noise both in radius estimation
and capturing range.

Geometry extraction validation. Table 1 shows the ac-
curacy, precision, sensitivity and specificity of scale-space
particles for vascular tree segmentation as the geometry of the
tree increases in complexity as depicted in Fig. 2. The results
show that our method consistently has a specificity and pre-
cision higher than 95% for all complexity levels. Accuracy
and sensitivity decreases as the number of terminal nodes is
greater than 300 in part due to the increment of smaller ves-
sels that are harder to extract (the mean tree radius decrease
from 2.41mm for 5 terminal nodes to 0.6 mm for 1000 termi-
nal nodes). Even though, for a highly complex tree with 1000
terminal nodes, our method’s accuracy still remains at 77%. It
also worth noting that the computational cost of our method is
in the order of minutes for a volume of 100x100x100 and the
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Fig. 1. Relative estimation error for radius estimation for a cone
phantom of variable radius. (a) Slide for the cone phantom for σb =
0 and σn = 200 pixels. (b) Relative estimation error for different
PSF. (d) Relative error for different noise levels and σb = 0.

Fig. 2. Particles extracted for vascular trees with increasing com-
plexity: (a) 10, (b) 100 and (c) 1000 terminal nodes respectively.

execution time has a logarithm relation with tree complexity.
Real cases. The proposed method has been used to ex-

tract the vasculature of 2,500 CT scans from the COPDGene
cohort. The CT scans were acquired at inspiration with a dose
level of 200 mAs and a smooth reconstruction kernel (B31f
and Bone for Siemens and GE scans respectively). For each
case, the distribution of blood volume with respect to the ves-
sel cross sectional areas was computed using the estimated
radius. Fig. 3 shows the result for two extreme cases corre-
sponding to smokers with different emphysema severity. Fig.
4a-b shows the intraparenchymal blood volume distribution
for those same cases. It is worth noting the shift in the blood
volume profile for the selected cases suggesting that proxi-
mal vasculature dilates to compensate for the increase in re-
sistance. This can be corroborated in Fig. 4c that shows the
relation between BV10/TBV and BV5/TBV across the 2,500
cases analyzed.

4. DISCUSSION AND CONCLUSIONS

We have presented an algorithm for the extraction and quan-
tification of the pulmonary vasculature that can be used within
a computational vascular morphometry framework for the
study of pulmonary vascular disease. Scale-space particles
appear to be a suitable strategy for this task as supported by
our results. The radius estimation provided by the scale esti-
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#Nodes True Pos. % False Pos. % True Neg. % False Neg. % Accur. % Prec. % Sensit. % Specif. % Time (s.) †

5 95.59 4.41 95.74 4.26 95.67 95.59 95.74 95.60 41
10 95.75 4.25 96.77 3.23 96.26 95.75 96.74 95.80 57
50 96.15 3.85 96.91 3.09 96.53 96.15 96.88 96.18 178
100 96.84 3.16 93.16 6.84 95.00 96.84 93.40 96.72 248
200 98.76 1.24 84.93 15.07 91.84 98.76 86.76 98.56 320
400 98.16 1.84 73.26 26.74 85.71 98.16 78.59 97.55 375
600 98.11 1.89 66.03 33.97 82.07 98.11 74.28 97.21 380
800 98.72 1.28 61.38 38.62 80.05 98.72 71.88 97.95 409
1000 97.89 2.11 57.73 42.27 77.81 97.89 69.84 96.48 449
mean(std) 97.5(1.1) 2.5(1.1) 79.5(15.4) 20.5(15.4) 88.5(7.3) 97.5(1.1) 84.0(10.9) 97.0(0.8) 292(140)

Table 1. Geometry extraction validation results using vascular trees of increasing complexity. We show results for 9 out of the 15 vascular
trees that were generated. Mean and std were computed using all volumes. † Intel Core 2 Duo 2.8 GHz.

Fig. 3. Figures A and D are coronal images of a subject with min-
imal (A) and severe (D) emphysema. Figures B and E illustrate
the scale-space particles based segmentation of the vasculature color
coded by vessel caliber (blue larger, red smaller).

mation holds for vessel sizes that are larger than the width of
the PSF under Gaussian assumptions. The proposed method
is also robust against Gaussian noise for the SNR range that
can be typically found in clinical CT. The accuracy and pre-
cision of our method depend on the tree complexity and are
bounded by the CT resolution. Further analysis includes the
validation of this technique with real data and the relation of
the proposed biomarkers with physiological markers of PVD
and clinical outcomes.
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