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Advances in high-resolution computed tomography (CT) imaging
are making a full three-dimensional analysis of the lungs feasible. In
particular, airway morphology can be studied in vivo and quantita-
tive metrics of airway size and shape can be extracted. The thicken-
ing process associated with the inflammatory response in the
diseased lung can be quantified by means of image processing
techniques that extract the airway lumen and airway wall. In this
article, we give an overview of these imaging techniques and their
diverse nature. We also offer a comprehensive view of the analysis
pipeline for three-dimensional airway trees and a validation frame-
work that is needed to compare different techniques.
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A wide range of lung diseases have some pathologic involve-
ment of the airways. Chronic obstructive pulmonary disease
(COPD), for example, is associated with a heterogeneous
mixture of emphysema and airway disease leading to incom-
pletely reversible expiratory airflow obstruction. Unfortunately,
standard spirometric methods for the assessment of disease
severity are insensitive to the relative burden of these two
processes. Further, due to the heterogeneous nature of this
disease, investigating the mutual interrelation and the potential
pathogenetic associations of airspace and airway disease
requires large study cohorts. Because of this, image-based tools
that facilitate the study of bronchial tree morphometry and
identify more homogeneous subsets of disease phenotypes are
crucial (1).

Over the last 30 years, X-ray Computer Tomography (CT)
has become the most promising clinical image modality for the
thorax because of its ease of use and its ability to exploit the
marked contrast in X-ray absorption properties between air and
tissue. Based on this tissue differentiation, CT has been used for
both the assessment of emphysema and airway morphometry.
Because of the limited out-of-plane resolution in early CT scan
technology, initial image-based investigations of the lungs in
subjects with COPD was constrained to the use of single slice
data examination at selected airway locations (2–5). As scanner
technology evolved and the speed of image acquisition im-
proved such that volumetric data can be easily collected in
a single breath hold, three-dimensional analysis of the tracheo-
bronchial tree has become a reality. Such data sets provide
a new venue for the application of computer vision techniques
that automatically analyze the airway tree and report metrics of
airway morphometry.

AIRWAY ANALYSIS PIPELINE

The morphometric analysis of the airway tree can be broken
down into three well-defined components. The first is the
detection of the luminal part of the airway tree, also known as
segmentation of the airway lumen. This is accomplished by
performing a voxel-by-voxel examination of the data set and
discriminating the presence or absence of airway lumen, re-
gardless of the size of the airway. After lumenal segmentation,
additional post-processing analysis may include extracting the
centerline of the airway tree (6) and subsegmental labeling
according to a canonical atlas (7).

The second component of the analysis pipeline is the
localization of the airway wall through the identification of
lumen–wall and wall–parenchymal boundaries on the CT im-
age. This falls into the more general problem of computed
tomographic measurement of thin-layered structures. After
lumen extraction and generation of the airway centerline, the
CT airway image may be reformatted such that its long axis is
orthogonal to the imaging plane. In this way, overestimation of
wall thickness due to obliquity can be minimized. After such
reformatting, the remaining challenge is the accurate definition
of the inner and outer mural boundaries. Given the comparable
size of airway walls and point spread function of the CT
scanner, the partial volume effect complicates this analysis.
Further, as one attempts to quantify the morphology of more
distal small airways, this partial volume effect becomes more
problematic and influences image-based assessments of airway
wall morphology in a nonlinear fashion. This latter observation
has led to the conclusion that the overestimation of image-based
measures of wall thickness is progressive and a function of
diminishing airway size (8). A final factor that complicates
efforts to perform quantitative airway analysis of CT images is
the influence of scanner type and imaging protocol on the
resultant image data. CT scanner algorithms used for image
reconstruction are proprietary, and there is only limited in-
formation available that can be referenced to determine the
‘‘likeness’’ of CT imaging protocols. This latter issue is of great
concern for multicenter clinical investigations, in which the use
of identical scanner brands and reconstruction algorithms
cannot be guaranteed.

Therefore, in the absence of using identical imaging param-
eters for data acquisition, an optimal method for quantitative
airway analysis in subjects with COPD would be one that
attenuates the effect of scanner brand and reconstruction pro-
tocol on measures of airway morphology.

The third component is validation. This process is focused
on directly comparing CT measures of airway morphology
to those obtained on histologic examination. Through this,
one can assess the deviation of derived measures of airway wall
thickness from a potentially more valid ‘‘truth.’’ Validation
has to be a main component of the airway analysis pipeline
to assure that different wall localization methods can be
adequately assessed against both each other and histologic
measurements.
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AIRWAY LUMEN DETECTION

The airway exhibits a tree-like structure with almost cylindrical
branches of decreasing radius. With a central air-filled lumen
surrounded by higher density mural tissue, proximal airway walls
provide an ideal contrast in composition for image analysis. As
the airway tree progresses into smaller, more distal generations,
however, the partial volume effect blurs the inner lumen and
bronchial wall into an indistinguishable mass with a CT density
similar to the lung parenchyma. This latter observation has
proven to be a major challenge for quantitative airway analysis.

The vast majority of algorithms that have been published for
the detection of the airway lumen are based on so-called ‘‘region-
growing’’ algorithms. The simplest region-growing approach
works by marching from a seed point inside the lumen to adjacent
voxels whose intensity is within a predetermined range expected
for air. When such criteria are met, the adjacent voxel is also
defined as lumen. The seed point is typically defined inside the
trachea automatically, and the region growing algorithm pro-
gresses from the larger central airways to the distal small airways.

Due to partial volume effects, which progressively blur
lumen and wall attenuation with airway sizes approaching the
limits of scanner resolution, the region-growing process tends to
stop prematurely when it can no longer find adjacent voxels of
low enough attenuation. Similarly, as the blurring of lumen and
wall progresses, one may find on visual inspection that airway
walls are discontinuous. At such sites, the region-growing
algorithm will ‘‘leak’’ into the surrounding lung parenchyma.

Different techniques have been proposed to deal with this
problem of segmentation leak. One such method was intro-
duced by Mori and coworkers and is aptly called explosion-
controlled region growing. (9). This method iteratively increases
the Hounsfield Unit threshold value used to define lumen in
adjacent voxels until the total number of growing voxels
increases too much in one single evolution step. Only adjacent
voxels below this CT attenuation value will therefore be defined
as lumen. Other methods based on this concept have been
proposed (10, 11). A similar approach proposed by Tschirren
and colleagues (12) works by defining local volumes of interest
as the region grows and performing an adaptive region growing
with fuzzy connectivity inside the defined volume of interest.
When a leak is detected, the evolution process is stopped for
that volume of interest. Figure 1 shows the region growing
evolution process for a sagittal slice.

In summary, factors that may limit airway lumen segmenta-
tion are as follows:

d Partial volume effect limits the distal extraction of small
airways and may lead to leaks in the propagation process
that have to be accounted for.

d CT artifacts like beam hardening and X-ray scattering
introduce changes in the measured CT intensity that
reduce image contrast and complicate the evolution pro-
cess due to spatially variant luminal CT intensity.

d Respiratory secretions inside the airway lumen and airway
stenosis may stop the evolution process, preventing the
extraction of distal airway segments.

d Image noise due to low radiation doses and high body mass
indexes also complicates the segmentation process.

Once the airway lumen has been segmented, standard post-
processing steps include centerline extraction and airway
labeling. The former has been widely studied in the computer
vision community and has been applied to virtual colonoscopy
and bronchoscopy applications among others. A common

technique to obtain a centerline is based on a thinning process
(13) that reduces the segmentation result to a set of pixels or
skeleton by removing voxels in an orderly fashion. Alterna-
tively, some proposed methods for airway lumen detection are
based on directly extracting the centerline. These approaches
track a centerline by using properties of the intensity profile
around the lumen, in particular by using the Hessian matrix
(14, 15). Although very promising in nature, these approaches
have not been widely used due to problems when dealing with
branches.

Anatomical labeling of the bronchial tree is another impor-
tant aspect of airway detection and segmentation. Although the
inter-subject variability in airway anatomy, specifically the small
airways, complicates this stage, different techniques seems to
achieve over 90% accuracy in resolving the right anatomical
label up to the fifth generation (7).

AIRWAY WALL LOCALIZATION

Accurate thickness measurement of sheet-like structures has
become increasingly important in clinical applications as well as
in fundamental research. Examples of structures that can be
modeled as such include airway walls, articular cartilage, and
the vertebral cortical shell. A sheet-like structure is defined as
being thin-layered with at least three different tissue densities
measured by CT. A layer is considered thin if the size of the
structure is in the order of the scanning resolution given by the
modulation transfer function (i.e., in the order of single number
of voxels). One complicating factor in performing measure-
ments on structures of such size is the blurring effect imposed by
the scanner point spread function (PSF), also known as partial
volume effect mentioned previously. When the size of the
structure to be measured is comparable to the scanner point
spread function spatial extent (2 or more pixel widths), standard
methods may result in a quantitative assessment of the PSF
rather than the structure itself (8).

The techniques employed to perform automatic airway wall
measurements can be broadly classified in two categories:
parametric and nonparametric methods. Parametric methods
are those that make use of the scanner point spread function
(PSF) to infer the location of the wall (16–20). These methods
attempt to undo the blurring process imposed by the scanner
PSF (i.e., partial volume effect). Typically, the PSF is modeled
as a Gaussian function and then the estimation of the PSF
reduces to the estimation of the Gaussian standard deviation.
The location of the airway wall can then be resolved by means
of an optimization technique that matches the measured in-
tensity profile and the expected intensity profile based on the
model. The main advantage of parametric methods is that they
may allow measurements below the scanner resolution. How-
ever, there are technical and practical limitations that preclude
their use in a clinical application. The scanner PSF is typically
a spatially variant non-Gaussian function (21) that is difficult to
model on in vivo structures and is not generally assessed using
a calibration phantom in the standard radiologic workflow.
In addition, the PSF varies among manufacturers, making
standardization at multiple sites challenging. Recognition of
these limitations has led to significant reluctance to use imaging
as a standard way to assess airway wall thickness in lung
diseases.

Nonparametric methods do not make use of the PSF of the
scanner, but rather attempt to infer the airway wall location by
analyzing properties of the reconstructed CT signal that may be
invariant to the blurring process imposed by the PSF (3, 22–24).
The traditional approach to perform wall thickness detection
based on nonparametric methods has relied on the so-called
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‘‘full width at half max’’ (FWHM) principle. It is based on the
observation that for an ideal step function undergoing a low-
pass filtering, the true edge is located at the FWHM location.
For an airway model, the ideal step function model is only
a good model for the inner and outer wall locations as long as
the wall thickness is much greater than the bandwidth of the
PSF. Otherwise, it has been shown that, under a Gaussian
model for the PSF, FWHM yields an underestimation and
overestimation of the inner and outer wall locations, respec-
tively (16).

An alternative approach to the definition of the airway wall
location is to use the properties of the second-order derivative
operator. A criterion to define the location of the wall may be
the location of the inflection point between the valley intensity
and the peak intensity. This inflection point is given by the zero
value of the second order derivative along the direction of the
multi-layered structure (22). This approach is closely related to
the edge-detection theory originally proposed by Marr and
Hildreth (25).

A recent alternative approach to localize the airway wall is
the phase congruency approach (24). Phase congruency is an
intrinsic property of a signal that can be used to characterize the

location of transitions (i.e., lumen-to-wall and wall-to-paren-
chyma); therefore, it can be used as a method for airway
measurement. Phase congruency is preserved even when the
signal undergoes some sort of smoothing such as the one
introduced by the PSF of the scanner. One approach to measure
phase congruency is by providing different approximations of
the signal that is being measured with different spectral
properties (i.e., different bandwidths). A way to achieve these
approximations from the scanner is to use different PSFs to
generate the final CT images. Although some of the compo-
nents that comprise the PSF are physically constrained and
cannot be easily modified, like the scanner geometry, others can
be changed even after the acquisition of the raw data. The
overall behavior of the PSF can be modified by choosing
different reconstruction kernels or algorithms. The reconstruc-
tion kernel is a parameter of the reconstruction process that
defines how the neighboring samples in the projection space
(Radon space) are averaged out before back-projection to
compute the final intensity of each pixel location (26). The
reconstruction kernel directly affects the spatial frequency
characteristics of the reconstructed image, resulting in a visually
smoother or sharper image. Figure 2 shows the effect of phase

Figure 2. Airway wall localization by means of
phase congruency using multiple kernels. The
location of the airway wall is expressed as the
location where the intensity profiles from mul-
tiple reconstruction kernels intersect.

Figure 1. Airway tree detection by means of
region-growing techniques. Left, evolution pro-
cess: voxels of similar intensity and connected
to an initial seed point are marked as belonging
to the airway lumen. Right, rendering of the full
airway tree.

Figure 3. Airway wall localization by means
of three nonparametric methods for the
same airway. The inner and outer luminal
contours are indicated in red and green,
respectively. Phase congruency yields a more
robust delineation of the airway wall when
dealing with adjacent blood vessels.
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congruency on an airway reconstructed with nine different
kernels. The common crossing point between the intensity
profiles from different kernels is an indicator of maximal phase
congruency, and therefore it can be used as an estimator for
airway wall location. The airway wall location is defined as the
location where the intensity profiles corresponding to multiple
kernels intersect. Preliminary results show that phase congru-
ency with multiple kernels can achieve a relative error below
5% in the estimation of airway wall thickness for structures that
are at least twice the pixel size. Figure 3 shows the localization
of an airway wall by means of three nonparametric methods.
Phase congruency not only gives a more accurate measurement,
but the result is more reliable, yielding a good definition of the
airway wall even in locations adjacent to vasculature structures
where the edge is not as well defined.

A main shortcoming of nonparametric methods is that they
are limited by the range of airway sizes that they can reliably
measure based on the limit imposed by the Nyquist theorem. This
limitation stems from the intrinsic behavior of nonparametric
methods that rely on the local spectral properties of the signal.
Airway sizes below the image resolution have spectral compo-
nents that are irremediably lost. In such cases, parametric
methods can potentially yield reliable measurement of structures
smaller than the image resolution by using the prior knowledge
given by the PSF to recover the blurring imposed by the scanner.

AIRWAY MEASUREMENTS

The results of the airway detection and localization processes
enable the quantification of airway morphometry by means of
different measurements of airway size. The measurements can
be broadly classified in the following categories according to the
dimensionality of the data:

1. One-dimensional (1D)-based measurements. For a given
airway location in the bronchial tree, an intensity profile
can be cast from the center of the lumen outwards. Based
on these profiles, measurements about the lumen radius
and wall thickness may be computed (3).

2. Two-dimensional (2D)-based measurements. These meas-
urements use the full extracted wall for a given airway
location along the tree centerline. Measurements like
luminal and wall area, wall area percentage (ration between
wall area and the outer wall area), and inner and outer
perimeter can be provided (4, 5, 27).

3. Model-based measurements. The definition of the airway
wall is challenging due to limitations in resolution, image
artifacts, and surrounding structures like vessels. A way to
partially overcome those challenges is by using a model of
the airway morphology, for example an ellipse (17). An
ellipse can be fitted to the inner and outer wall locations
defined in the localization stage. Measurements that can
be computed to establish airway morphometry are: ellipse
major and minor axis lengths, angle between ellipse axes,
ellipse eccentricity, the ratio between axis lengths, and
ellipse area.

4. Three-dimensional (3D)-based measurements. The pre-
vious set of measurements focus on a given point along
the extracted airway tree. The associative information
that the airway tree provides can be used to yield the
previous set of measurements either on a per-segment or
per-lobe basis. Rate of change can be also studied by taking
first order (and even higher order) derivatives of the

corresponding measurement along the airway centerline.
Rate of change can be useful to reveal different patterns of
airway size tapering across different subject populations.

5. Structural measurements. Measurements of a different
nature are those that focus not only on the airway
morphometry but the airway structure itself. In this sense,
measurements based on the CT density of the airway
inside the wall might reveal important information about
the mural remodeling process.

6. Relational measurements. A widely unexplored area is
the possibility of deriving new measurements that try to
relate emphysema and airway diseases. For example,
areas of emphysema, as defined by one of the multiple
image-based criteria, could be related to areas of wall
thickening by computing lung density as a function of
distance from the bronchial tree.

VALIDATION

The validation of the different computational techniques in-
volved in airway morphometry is crucial to establish the accuracy
and precision of these methods. Validation attempts to bridge the
gap between the measurement done using high-resolution
(HR)CT and the measurement that could alternatively be
achieved by histologic assessments of the same airway. The
validation task can be seen as a process that involves different
levels in both complexity and scope. A standard for the evaluation
of airway localization techniques can be broken down as follows:

1. Computerized airway models. Airway models can be
defined analytically and the method response can be
computed over those analytical models to evaluate the
accuracy of the airway localization algorithms (8). For
example, Reinhardt and coworkers (16) reported that the
FWHM overestimates airway wall thickness by means of
an analytical model. Methods can be also tested against
synthetically generated images of different airway sizes
that mimic the results obtained by HRCT. In this case, the
ground truth for airway wall thickness is accurately
established by means of experiment design.

2. CT airway phantoms. Phantoms made of plastic tubes and
parenchymal-like materials (16, 17, 24) serve as a good
surrogate to establish method accuracy. Partial volume
effect and other related scanner artifacts can be properly
accounted for by using airway phantoms. These tools do
not, however, accurately reflect in vivo airway peculiarities
such as erratic airway density or the variable body mass
surrounding such structures as seen in a clinical cohort.

3. CT airway tissue samples. Ex vivo airway tissue samples can
be used to obtain CT images that capture the different
airway and parenchymal details that cannot be reproduced
by means of an airway phantom. The true airway wall
thickness can be assessed either by microscopic analysis of
the ex vivo airway or by means of micro-CT (28).

4. In vivo validation. The last step is the in vivo validation of
airway morphometry methods by means of in vivo ultra–
high-resolution imaging techniques like optical coherence
tomography (OTC). Recent studies like those performed
by Coxson and colleagues (29) show the applicability of
OCT to establish correlations between CT-based measure-
ment and high-resolution imaging–based measurement.
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CONCLUSIONS

CT technology has radically advanced in the last 20 years;
however, the resolution provided by current state-of-the art
scanners is still limited in providing a precise analysis of the
airway morphometry, at least at a meaningful histologic level.
The variety of airway measurements is conditioned by the
capabilities of localizing the airway wall. Without a full charac-
terization of the CT scanner (by means of PSF estimation),
methods used for airway wall localization and quantitative
measurement are bounded by the scanner resolution. Given
such constraints, accurate mural assessment of the small airways
where expiratory airflow obstruction is thought to occur is not
possible (30). Unfortunately, characterizing the scanner PSF is
complex and disrupts the current radiology flow for patient
scanning. Recent alternative approaches, like phase congru-
ency, seek to exploit the information carried by several re-
construction kernels to improve airway measurement accuracy
without resorting to a full PSF characterization. These new
approaches, while increasing post-processing time and storage
requirements, would keep patient scanning time and radiation
exposure unchanged and may increase accuracy with respect to
well-regarded methods like FWHM for airway wall morphometry.

Finally, given the multitude of software packages available
for quantitative analysis of CT images, validation of the metrics
obtained has become crucial. To facilitate such investigation,
consideration should be given to create an open access resource
of images with corresponding histologic measures similar to the
tissue bank created for the Lung Tissue Research Consortium.
While the up-front investment in such an endeavor is not
insignificant, the resultant database would serve as a national
and international metric for methodologic investigation and
could serve as the standard for evaluating image analysis tools
for use in multicenter investigations.
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