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Abstract. Regional assessment of lung disease (such as chronic obstructive pul-
monary disease) is a critical component to accurate patient diagnosis. Software
tools than enable such analysis are also important for clinical research studies.
In this work, we present an image segmentation and data representation frame-
work that enables quantitative analysis specific to different lung regions on high
resolution computed tomography (HRCT) datasets. We present an offline, fully
automatic image processing chain that generates airway, vessel, and lung mask
segmentations in which the left and right lung are delineated. We describe a novel
lung lobe segmentation tool that produces reproducible results with minimal user
interaction. A usability study performed across twenty datasets (inspiratory and
expiratory exams including a range of disease states) demonstrates the tool’s abil-
ity to generate results within five to seven minutes on average. We also describe
a data representation scheme that involves compact encoding of label maps such
that both “regions” (such as lung lobes) and “types” (such as emphysematous
parenchyma ) can be simultaneously represented at a given location in the HRCT.

1 Introduction

Regional assessment of lung disease is an important component of both diagnosis and
therapy. Furthermore, localized quantitation of disease can provide insight into under-
lying disease mechanisms, and tools that offer such regional assessment are invaluable
in large epidemiological studies. As an example, chronic obstructive pulmonary disease
(COPD) is projected to be the 3rd leading cause of death worldwide by 2020 [1,2,3].
There are at least two distinct mechanisms of expiratory airflow obstruction in COPD
subjects: emphysematous destruction of the lung parenchyma leading to airway collapse
and intrinsic disease of the small airways [4,5]. The relative burden of airspace and air-
ways disease can vary, however, within a cohort of subjects with similar lung function
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[6], and even regionally within the lungs of an individual [7]. Standard metrics, such as
Forced Expiratory Volume in one second (FEV1), while reproducible and easy to mea-
sure are not necessarily indicative of the cause of airflow obstruction. Because of this,
image based methods are useful for investigating subjects with COPD and helpful to
define more homogeneous subsets of subjects within a cohort with comparable degrees
of airflow obstruction.

Anatomically, the lungs consist of distinct lobes: the left lung is divided into upper
and lower lobes, while the right lung is divied into upper, middle, and lower lobes. Each
lobe has airway, vascular, and lymphatic supplies that are more or less independent of
those supplies to other lobes. Hence, the lobes represent natural anatomic units over
which to compute image-based disease metrics. Fissures (left oblique, right oblique,
and right horizontal) define the boundaries between the lobes and present as 3D surfaces
that have greater attenuation (i.e. are brighter) than the surrounding lung parenchyma in
HRCT datasets. However, advanced disease states (emphysema), atelectasis, and certain
imaging protocols (expiratory acquisitions) can make it extremely difficult to detect the
fissures in certain regions, and the judgment of medical professionals is typically needed
in order to define the location of these structures.

There have been a variety of lobe segmentation and fissure detection approaches
developed to date. [8] uses fuzzy sets to define likely (oblique) fissure locations fol-
lowed by a graph search to select the most probable fissure locations in 2D slices. Their
method requires manual initialization, and results were reported on normal subjects. [9]
first obtain a vessel segmentation from which they derive a distance map. The distance
map, in conjunction with the original image and user interaction, drive watershed seg-
mentation of the lobes. [10] perform lobe segmentation in a similar fashion but use a
segmented airway tree to seed the watershed segmentation in an automatic framework.
[11] generate ridge maps to enhance fissures and then use active open contours to de-
lineate the fissures. Ten patients with pulmonary nodules were tested in their study. Al-
gorithm run times were approximately five minutes and manual correction was needed
in about 2.4% of the fissure regions. [12] use deformable mesh models to segment the
lobes. They report accuracy results of 1 mm to 3 mm on a limited number of test sets.

In order to address segmentation failure modes that can be caused by extreme disease
states, specific imaging protocols, or insufficiently segmented auxiliary structures (ves-
sels or airways), manual interaction is needed. In this paper we present an interactive
lung lobe segmentation scheme that enables fast, easy, and accurate segmentation in
spite of such factors. The segmentation results are incorporated into an overall data rep-
resentation framework that provides a compact way to simultaneously encode both lung
regions (e.g. lobes) and types (e.g. parenchyma states). This representation provides a
convenient way to interrogate the underlying CT data to assist with both diagnosis and
exploratory research. In section 2 the lobe segmentation method and preprocessing steps
are presented. The data representation framework is also explained. In section 3 image
preprocessing and lobe segmentation examples are shown. We also conducted a study
in which two pulmonologists used the lobe segmentation tool to produce segmentations
across twenty HRCT datasets; results of this study are presented. Finally, conclusions
are drawn in section 4.
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2 Methods

In this section we begin by explaining the data representation scheme we use to encode
segmentation results throughout the image processing pipeline. Next, we describe the
image pre-processing steps required for the interactive lobe segmentation tool. Finally,
we describe the lobe segmentation tool itself and discuss its usage and the underlying
segmentation algorithm.

2.1 Label Map Representation

There are two abstract lung components of interest for the purposes of quantitative
analysis: we refer to these as “regions” and “types”. Currently, the regions we extract
include the left upper and lower lobes; the right lower, middle and upper lobes; the left
lung; the right lung; and the whole lung. These regions are naturally represented in a
hierarchical framework, as depicted in the figure below. E.g., the left upper lobe is a
part of the left lung, which is a part of the whole lung. The types currently represented
include airway, vessel, normal parenchyma, and emphysematous parenchyma. The la-
bel maps produced by the segmentation routines (described below) are represented as
16-bit data; the least significant eight bits are used to encode the lung region while
the most significant eight bits encode the lung type. This enables up to 256 regions
and 256 types to be encoded within a single dataset. Extensions to the list of regions
given above could include each lobe’s set of sub-lobes, e.g., while extenstions to the
list of types could include a range of disease states (ground glass parenchyma, reticular
parenchyma, etc.) as well as other basic anatomical types (airway lumen, airway wall,
etc). The table below provides an example numbering scheme. As an example the 16-
bit value corresponding to 00000110 00000100 (a base ten value of 1540) corresponds
to reticular tissue in the right upper lobe while the 16 bit value 00000000 00000010 (a
base ten value of 2) corresponds simply to right lung.

Fig. 1. Lung Region Hierarchy Diagram

2.2 Offline Image Processing

We employ a completely automatic image processing pipeline to generate initial seg-
mentations of regions and types of interest. Prior to segmentation, the HRCT dataset is
pre-processed with a median filter using a 3x3x3 kernel. The lung mask is then segmented
using an approach very similar to that outlined in [13]. Briefly, this involves initial gray
level thresholding using Otsu’s method followed by morphological closing to fill in high
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Table 1. Regions and Types Numbering Scheme

Region 8-Bit Value Type 8-Bit Value
Undefined 0 Undefined 0

Whole Lung 1 Normal Parenchyma 1
Right Lung 2 Airway 2
Left Lung 3 Vessel 3

Right Upper Lobe 4 Emphysematous 4
Right Middle Lobe 5 Ground Glass 5
Right Lower Love 6 Reticular 6
Left Upper Lobe 7 Nodular 7
Left Lower Lobe 8

attenuating areas within the lung field. These high attenuating areas tend mostly to be
pulmonary vessels, so we assign these voxels a type value of “vessel” with the under-
standing that in some cases diseased lung parenchyma (due to edema or fibrosis) may be
labeled vessel as well. We label the data as such in the eventuality that voxels labeled as
“vessel” may be able to initialize more sophisticated vessel segmentation routines, but it
should be emphasized that vessel segmentation is not the current objective.

In order to properly label airways outside the lung field (trachea and main bronchi),
we apply connected component region growing to segment the airways. The patient ori-
entation is obtained from the input DICOM dataset; this allows a search for the trachea
from the correct end of the dataset: axial slices are iteratively considered until a small

Fig. 2. User-defined points along right horizontal
fissure

foreground structure in the center of the
image is detected. Spatial consistency
over several slices ensures that the ob-
ject in question is indeed the trachea and
not a spurious foreground object. Once
this region of the trachea is determined,
an initial threshold and seed location are
selected to initialize the region growing
algorithm. Region growing is repeated it-
eratively, and at each iteration the volume
of the extracted airway tree is computed.
Provided that the change in volume from
one iteration to the next is within a cer-
tain tolerance, iteration continues with
progressively higher threshold values.
The final threshold is the one that lies
at the boundary between acceptable air-
way segmentation and segmentation “ex-
plosion” due to leakage into parenchyma.
To differentiate between airways that lie
within the parenchyma and those that lie outside the lung field, each axial slice is con-
sidered in turn. Connected components is performed to identify regions labeled as lung
and those segmented as airways. If the perimeter of an airway component is surrounded
by at least 75% lung region, that entire component is assigned the region “whole lung”,
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otherwise the assigned region is “undefined”. Following the approach outlined in [13],
minimum cost paths are determined using Dijkstra’s algorithm in order to separate the
left and right lungs. Given the known patient orientation in the image field, the lung
regions are further labeled as “left” and “right”.

2.3 Interactive Lobe Segmentation

We have developed a novel interactive lung lobe segmentation tool that enables a user
to quickly, easily, and accurately generate segmentations of the left upper and lower
lobes and right upper, middle, and lower lobes. This tool has been incorporated as a
plugin for the Slicer3 software application. From the user’s perspective, use of the tool
involves loading the HRCT dataset and corresponding lung label map produced by the
offline image processing pipeline. Next, the user simply scrolls through the HRCT data
and clicks on points along three major fissures: left oblique, right oblique, and right hor-
izontal. Figure 2 gives an example of two user-defined points along the right horizontal
fissure. The dataset shown is an expiratory acquisition, and it is easy to appreciate from
this example how faint fissures can be in such scans. Only a handful of points is neces-
sary in most cases. Once these points have been selected, the segmentation algorithm is
invoked, and the results are displayed for user verification. Additional points may then
be added in areas of misalignment.

The underlying algorithm driving the lobe segmentation method employs thin plate
splines (TPS) [14] to define height surfaces corresponding to the three fissures. The
equation of the height surface is given by

f (x, y) = a1 + a2x + a3y +
n∑

i=1

wiU (|Pi + (x, y)|) (1)

where U(r) = r2 log r is the radial basis function. The coefficient vector, a = (a1, a2,
a3), and the weight vector, w = (w1, . . . , wn) are determined from the n user-defined
points, P , such that the height function’s bending energy, E, is minimized.
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Intuitively, TPS provide an interpolation scheme whereby a minimally curved surface
is defined such that it passes through all the user-selected points. A separate 3D surface
is defined for each of the three fissures. The region of support for the left oblique fissure
is the projection of the left lung region onto the axial plane and similarly for the fissures
in the right lung. Using the height surface equation given above, voxels in the lung field
falling on the surface (within the tolerance of a voxel width) are assigned a type value
of “oblique fissure” or “horizontal fissure” depending on which user defined point set is
being considered. We impose the anatomically-based constraint that the right horizontal
fissure is only defined as such in regions where its height function value is above that of
the right oblique fissure. Connected component region labeling is then used to label the
upper and lower lobes in the left lung from the lung regions that lie above and below
the left oblique fissure, respectively. Similar logic is applied to label the regions in the
right lung. Note that during this region relabeling operation, the types assigned from
the offline processing (airway and vessel) remain unchanged.
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Fig. 4. Region and Type Segmentation. Top row shows example results from the automatic pro-
cessing stage. Bottom row shows lobe segmentation results produced with the interactive lobe
segmentation tool.

3 Results

Figure 4 shows results produced from the automatic processing stage (top row) and the
interactive lobe segmentation tool (bottom row). The image in the upper left depicts

Fig. 3. Airways and Lobe Regions

all regions (left and right lung) and types
(airways and vessels) extracted during this
stage. Vessel and airway types are iso-
lated and displayed in the upper middle
image, and airway type is depicted in the
upper right. It should be emphasized that
the lobe segmentation results (bottom row)
are merged with the output of the offline,
automatic image processing stage, so the
final label map includes regions left up-
per lobe, left lower lobe, right upper lobe,
right middle lobe, right lower lobe; and
types airway, vessel, oblique fissure, and
horizontal fissure.

The utility of the region-type framework
can be illustrated by figure 3 in which the
following region-type pairs are isolated:
(undefined, airway), (left upper lobe, air-
way), (left lower lobe, airway), etc. Alternatively, the user could have isolated all air-
ways in the left lung, or simply the entire segmented airway tree, all with a single label
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map representation. A similar analysis could be performed on the lung parenchyma: by
assigning all voxels below a specified threshold a type value corresponding to “emphy-
sematous parenchyma” [15], interrogation of the dataset for disease localization can be
efficiently performed.

The results of the lobe segmentation tool’s usability study are summarized in table 2.
Twenty datasets were included in the study, and both inspiratory and expiratory ex-
ams were considered. A range of disease states (including severe emphysema) are also
represented.

The two users had slightly different approaches to the tool’s usage. Reader 1 tended
to rely on the tool’s interpolation more: he initially deposited a small number of points,
executed the algorithm, and then added additional points in areas of misalignment. This
was repeated until a satisfactory result was reached. While this approach ultimately
required fewer points per fissure (compared to reader 2), the iterative nature caused
longer overall usage times. (Usage time here is defined as the length of time between
the first clicked point and the final declaration of a satisfactory result). Reader 2 initially
deposited many more points per fissure than reader 1, but this resulted in a better fit
surface at the outset, required fewer fixes, and resulted in shorter usage times overall.
Note that algorithm run time is mainly a function of the HRCT dataset size, and the
dependence on the number of user-defined points is negligible.

Table 2. Lobe Segmentation Results. Cases are numbered and indicated as either inspiratory (i)
or expiratory (e). The first three columns for each reader represent the number of points selected
for the left oblique fissure (LO), the right oblique fissure (RO), and the right horizontal fissure
(RH). Euclidean distances reflect the agreement between the two readers for each of the three
fissures.

Reader 1 Reader 2 Euclidean Distance (mm)
LO RO RH Usage Time (minutes) LO RO RH Usage Time (minutes) LO RO RH Algorithm Time (seconds)

Case 1 (e) 12 8 8 6 10 16 8 7 1.75 ± 2.72 2.58 ± 2.36 4.08 ± 3.69 45
Case 2 (i) 10 13 14 7 10 21 11 7 0.98 ± 0.98 3.60 ± 3.41 2.96 ± 3.75 53
Case 3 (e) 8 24 9 9 26 41 13 10 4.17 ± 5.15 4.35 ± 4.81 2.97 ± 3.39 48
Case 4 (i) 6 18 7 9 20 26 14 5 2.83 ± 2.69 2.68 ± 2.72 2.39 ± 2.15 46
Case 5 (e) 8 13 6 6 13 18 5 3 2.75 ± 2.59 1.10 ± 1.32 0.80 ± 0.70 26
Case 6 (i) 11 15 9 5 14 17 7 5 1.86 ± 1.73 0.85 ± 0.98 4.51 ± 3.93 41
Case 7 (e) 9 16 15 6 13 19 10 4 1.45 ± 1.54 0.81 ± 0.81 6.44 ± 8.15 26
Case 8 (i) 10 15 9 6 18 15 7 5 1.61 ± 1.76 2.19 ± 2.15 1.21 ± 1.14 33
Case 9 (e) 16 22 15 10 8 23 14 4 1.25 ± 1.27 3.74 ± 4.60 2.27 ± 1.90 32
Case 10 (i) 9 13 14 9 16 15 12 4 0.99 ± 1.07 4.01 ± 3.75 4.32 ± 7.73 46
Case 11 (e) 12 20 11 7 17 23 19 4 1.32 ± 1.23 1.29 ± 1.24 0.66 ± 0.81 51
Case 12 (e) 9 12 20 10 17 18 13 4 3.32 ± 3.25 1.69 ± 2.60 3.02 ± 2.73 35
Case 13 (i) 12 31 10 11 19 22 17 3 1.82 ± 1.75 2.21 ± 2.95 7.19 ± 6.41 45
Case 14 (i) 11 16 11 6 13 17 15 7 1.59 ± 1.51 1.23 ± 1.40 4.02 ± 4.91 50
Case 15 (e) 20 12 6 6 13 20 11 4 5.18 ± 7.17 2.43 ± 2.63 2.43 ± 2.22 40
Case 16 (e) 6 17 6 5 11 30 14 8 1.59 ± 1.55 1.88 ± 2.10 13.7 ± 13.8 43
Case 17 (i) 9 20 8 8 10 41 13 8 2.08 ± 2.03 4.21 ± 4.82 2.02 ± 2.00 53
Case 18 (e) 13 15 6 5 13 23 11 5 1.85 ± 1.78 1.24 ± 1.18 4.45 ± 3.68 50
Case 19 (i) 17 17 6 7 29 24 16 6 1.34 ± 1.36 1.72 ± 1.85 1.65 ± 1.41 54
Case 20 (e) 11 24 7 8 22 43 14 12 1.84 ± 1.97 1.37 ± 1.34 19.4 ± 18.67 46

Average 10.95 17.05 9.85 7.3 15.6 23.6 12.2 5.75 2.08 ± 2.26 2.26 ± 2.45 4.52 ± 4.66 43.15

Despite the two approaches used by readers 1 and 2, the overall segmentation results
are in very good agreement across the set of exams. This is reflected by the Euclidean
distances between fissures presented in table 2. Disagreement is most noticable for the
right horizontal fissure. This is not surprising given that minor (horizontal) fissures are
incomplete more often than major (oblique) fissures [16]. In such cases readers have to
make boundary decisions in the near absence of image features.
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4 Conclusion

We have presented a novel lung lobe segmentation tool that requires minimal user input
and enables users to quickly and accurately produce lobe segmentations in spite of se-
vere disease states and imaging protocols that can obscure fissure image signatures. The
tool enables satisfactory results to be produced on HRCT datasets (which can consist of
several hundred slices) in a matter of minutes. We also described a data representation
scheme that provides a flexible framework for regional image quantitation.
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