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Abstract

Diffusion tensor imaging (DTI) constitutes the most used paradigm among the diffusion-weighted magnetic resonance imaging (DW-
MRI) techniques due to its simplicity and application potential. Recently, real-time estimation in DW-MRI has deserved special attention,
with several proposals aiming at the estimation of meaningful diffusion parameters during the repetition time of the acquisition sequence.
Specifically focusing on DTI, the underlying model of the noise present in the acquired data is not taken into account, leading to a suboptimal
estimation of the diffusion tensor. In this paper, we propose an optimal real-time estimation framework for DTI reconstruction in single-
coil acquisitions. By including an online estimation of the time-changing noise variance associated to the acquisition process, the
proposed method achieves the sequential best linear unbiased estimator. Results on both synthetic and real data show that our method
outperforms those so far proposed, reaching the best performance of the existing proposals by processing a substantially lower number of
diffusion images.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Magnetic resonance imaging (MRI) allows for easily
identifying the anatomical structures of the brain in vivo.
However, with this modality, the white matter appears as a
homogeneous region, which hides the complex microarch-
itecture and connectivity of the nervous fibers comprised in
this tissue. Diffusion-weighted MRI (DW-MRI) is intended
to overcome this drawback, taking advantage of the diffusion
of water molecules along the myelinated fiber bundles in the
white matter.

The three-dimensional diffusion probability displacement
function (PDF) or diffusion propagator of water molecules

can be inferred from DW-MRI by acquiring a number of
diffusion-sensitized images along different orientations of
the sampling space. DW-MRI leads to diffusion-direction-
dependent image intensities. In the case of anisotropic water
diffusion, these intensities will be low if the measurement
gradient direction is aligned with the major direction of
diffusion and high for diffusion directions orthogonal to the
measurement gradient direction.

The number of required diffusion-weighted images
(DWIs) depends on how the diffusion is modeled. The
well-known diffusion tensor (DT) model assumes a Gaussian
PDF and requires at least six DWIs plus an additional
unweighted image. Since the physics of the problem impose
the radial symmetry of the diffusion, the entire process can
be described in terms of the 3×3 covariance matrix of a
Gaussian random variable. As such, the covariance matrix is
positive, definite and symmetric, so it has only six degrees of
freedom. This matrix is the diffusion tensor, and those
techniques oriented to compute and represent it (or
parameters derived from it) at each location of a three-
dimensional volume are gathered under the denomination of
DT (magnetic resonance) imaging (DT-MRI or DTI). Due to
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the six degrees of freedom of the DT, it may be determined
from six independent gradient directions (thus, the need for
six DWIs [1]). Nevertheless, it is very common to acquire a
higher number of directions (DWIs) to improve the
robustness of the estimation [2].

A number of techniques have been recently developed in
order to overcome the limitations of the DT model. These
limitations are imposed by the Gaussian assumption, which
cannot properly model fiber bundle crossing (diffusion in
two or more principal directions). The group of methods
known as high angular resolution diffusion imaging
(HARDI) goes beyond these limitations and ranges from
more or less immediate extensions of the DT model to
multitensor models [3–5], continuous distributions of
tensors based on deconvolution approaches [6–10] or
generalized tensor models [11], to even more general,
nonparametric techniques [12,13] like the popular Q-ball
[14,15] or the recent improvements including solid-angle
considerations [16–18]. Recently, multishell approaches
[18–20] have allowed to overcome some of the limitations
of HARDI techniques at the expense of acquiring far more
diffusion directions.

Robust estimation in DTI usually requires long acquisi-
tion times due to the increase in the number of DWIs needed.
Acquisitions may be even longer for HARDI or multishell
techniques [21,22]. This can be problematic when there is an
excessive motion of the patient undergoing the scan (a
frequent situation for neurological patients or children who
cannot be sedated). Severe motion during the scan can force
it to be aborted or render the acquired DWIs useless. Thus,
one would like to make only as few acquisitions as possible.
An estimation framework providing real-time estimates as
new DWIs are available would allow online checking of the
quality of the estimations. This would deliver immediate
feedback to help the practitioner decide whether the
acquisition is sufficiently acceptable to stop the procedure.

Poupon et al. [21,22] proposed an interesting approach
based on the Kalman filter for real-time estimation of the
DT and the orientation distribution function (ODF)
obtained from Q-ball imaging. The DT model, provided
that certain signal-to-noise ratio (SNR) conditions are met
and no positivity constraints exist, is linear and easily fits
into the Kalman filtering framework. As for the recon-
struction of the ODF following [23], Deriche et al. [24]
demonstrated that the approach in Refs. [21,22] was
suboptimal and proposed a regularized Kalman filter that
nicely addressed this issue. Brion et al. [25,26] recently
proposed an improved version of the filters in Refs.
[21,22,24]. In their work, the acquired DWIs are
previously denoised in real time by means of the signal
estimator proposed in Ref. [27]. This way, the Kalman
filter benefits from the higher SNR of the observed data,
yielding a performance improvement for both DT and
ODF estimation.

The authors of Refs. [21,22], however, focus on the real-
time aspect of the general algorithm, and thus, they do not

elaborate on the specific noise statistics of the DT model. In
their estimator, the same variance is considered for each
logarithmic DWI signal (log-DWI hereafter), and this turns
out not to be true [2,28]. With this constant variance
assumption, the estimator proposed in Refs. [21,22] behaves
as a sequential ordinary least squares (OLS) algorithm,
which is suboptimal for this application. The method in Refs.
[25,26] also behaves as a sequential OLS since it considers
that the noise variance after signal restoration is the same for
all the restored log-DWIs. If this assumption is not valid
before signal denoising, it will remain the same for the
restored data. Thus, the OLS is also suboptimal in this case.

The batch (offline) OLS estimator can be shown to be the
best linear unbiased estimator (BLUE) for the linear model
provided that the underlying noise is uncorrelated (with the
same variance for each log-DWI) and has zero mean [29].
For single-coil acquisitions, where the signal can be modeled
as Rician [30], the noise in each gradient image is assumed to
be independent, but the variance suffers nonnegligible
changes across log-DWIs. Salvador et al. [2] proposed an
improvement to DT estimation in single-coil acquisitions
based on LS. Since no constant variance can be assumed,
those measurements with higher noise variance are less
reliable. A strategy giving higher relevance (weight) to those
samples with lower variance would be preferable instead.
Thus, the proposal in Ref. [2] was based on the weighted
least squares (WLS) estimator, which is in fact the BLUE
under these conditions1.

It can be demonstrated that the optimal weights for the
WLS estimator are the inverses of the noise variances
associated to each log-DWI measurement, so a formal noise
characterization of the linearized DT model is necessary. In
Ref. [2], this problem was solved by assuming that the
variance of the logarithmic observations in the Rician model
is inversely proportional to the squared amplitude of the
corresponding DWI signal. Though the authors only
provided empirical evidence, it is an excellent approach
which has been analytically solved in Ref. [28]. When the
data have been previously denoised, the noise characteriza-
tion depends on the specific filter employed for restoration,
although, in most practical cases, the dependence with the
DWI amplitudes remains the same.

In this paper, we address the problem of optimal real-time
estimation in single-coil DT-MRI acquisitions. A strategy
based on real-time signal restoration is proposed to
incorporate time-varying noise information to the online
estimation process. Based on this strategy, we propose a
sequential WLS estimation framework which can be used
with either directly measured data or the real-time restored
data as inputs, achieving the BLUE in both contexts. A
comparative analysis over both synthetic and real data shows

1 In the case of simultaneous acquisition and parallel reconstruction
schemes (pMRI), the noise is no longer Rician [31–33], and the bias in
WLS estimation is relevant as shown in Ref. [28]. Thus, although the WLS
is still applicable, it is not the BLUE for pMRI schemes.
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that the proposed estimators, respectively, outperform the so
far proposed Kalman filters in Refs. [21,22] and Refs.
[25,26] when either the acquired or the real-time-denoised
DWIs are used for estimation.

2. Background

2.1. The DT model

The tensor model relates the unnoisy DWI signal Ai for
each gradient direction i to the T2 baseline image Ao by
using the well-known Stejskal–Tanner equation [34]:

Ai = A0exp −bgTi Dgi
! "

; 1ViVN ð1Þ

where gi=[gix, giy, giz]
T are the N gradient directions, b is the

diffusion weighting parameter and D is the DT, a second-
order tensor. The model in Eq. (1) can be easily simplified by
taking logarithms on both sides of the equation:

log A0ð Þ − log Aið Þ = bgTi Dgi ð2Þ

and by further developing the quadratic form, a simple linear
equation can be obtained:

xi = hTi d ð3Þ

where we define the log-attenuations as xi=log(A0/Ai) and
d=[Dxx, Dxy, Dxz, Dyy, Dyz, Dzz]

T is the vector of the six
unknown components of the DT. The i-th sensitization
vector is defined as hi=b[gix

2, 2gixgiy, 2gixgiz, giy
2, 2giygiz,

giz
2]T. By rearranging all the N equations describing the

intensities for a given voxel, the following linear system
can be obtained:

x = Hd ð4Þ

where x represents the column vector containing the N log
attenuations and H is the diffusion-sensitization matrix,
whose rows are given by hi

T. The DT can be easily
obtained by solving the system in Eq. (4). Since the tensor
is symmetric, it has only six degrees of freedom. Thus, the
system in Eq. (4) can be solved for N=6. However, the
noisy nature of the DWIs turns the process of solving
the linear system in Eq. (4) into an estimation problem.
Thus, a higher number of gradients is usually necessary in
order to decrease the variance of the estimated tensor.

Assuming that no motion or other artifacts exist, the
main source of noise in MR images is thermal noise [35].
Under these conditions, the received signal Mi is the
Rician distributed envelope of a complex Gaussian
process [30]:

Mi = jAi + ni j ð5Þ

where ni=nc,i+jns,i is a complex noise process whose real
and imaginary parts are independent Gaussian processes
with zero mean and variance σ2. With Ai related to the
DT by Eq. (1), the linearization of Eq. (5) can be

performed by taking logarithm on both sides, leading to
the following equation [2]:

y = Hd + ɛ ð6Þ

where the vector of measured log-attenuations is given by y=
[y1, y2,…, yN]

T with yi=log(A0/Mi) distributed under a log-
Rician probability law (see Ref. [2], Eqs. (13–14)) and ɛ is the
vector ofN independent noise terms. There are three important
issues concerning this noise term that should be highlighted:

1. E ɛf gc0.
2. The noise covariance (Cov{ɛ}) is given by

Cɛ = diag r21; r
2
2; N ; r

2
N

! "
ð7Þ

where σi≈σ/Ai, i=1,… N.

3. For SNR values higher than 4 dB, the noise
distribution is approximately Gaussian, i.e., ɛ∼N (0,
Cɛ).

Salvador et al. [2] provided empirical evidence of both the
proximity to the Gaussian nature and the approximate values
of the first- and second-order moments. As for the moment
values, analytical expressions for the moments of log(Mi) are
provided in Ref. [28]. From these equations, the derivation of
the corresponding expressions for ɛi is straightforward.

2.2. Classical batch estimation in DTI

The simple model in Eq. (6) fits perfectly into an LS
estimation framework. The OLS estimate of the vectorized
DT is obtained as [29]:

bd = argmin
d

y−Hdð ÞT y − Hdð Þ
n o

= HTH
! "−1

HTy ð8Þ

The OLS estimator in Eq. (8) constitutes the de facto
standard which is used in almost every clinical study based on
DT-MRI. However, the linearized DT model resembles the
type of model for which the WLS estimators are optimal (in
terms of minimum variance and bias of the estimates). The
OLS estimator coincides with the BLUE for the linear model
in Eq. (6) if E{ɛ}=0 and Cɛ=σOLS

2 IN, with σOLS
2 a constant

variance term for all i and IN the N×N identity matrix.
However, for the log-Rician model, Cɛ is given by Eq. (7).
Thus, the BLUE in this case is the WLS estimator [29]:

bd = argmin
d

y−Hdð ÞTW y − Hdð Þ
n o

= HTWH
! "−1

HTWy

ð9Þ

with the optimal weight matrix given byW=Cɛ
−1=diag(1/σ1

2,
1/σ2

2,…, 1/σN
2). Since σi=Ai/σ for the log-Rician model— Eq.

(6) — a previous knowledge of the Ai values is necessary to
estimate the DT applying WLS. However, at the beginning of
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the estimation process, only the noisyMi values are available.
This problem can be solved by estimating the Ai values
beforehand. Since the OLS estimates remain unbiased under
inequality of variances, they can be used to give this
preliminary estimate. Despite the necessity of this iterative
estimation, the WLS constitutes an interesting alternative to
OLS estimation in DTI. Apart from being the BLUE, if the
Gaussian assumption for the measured signal can be made, the
WLS is also an efficient estimator [29].

2.3. Real-time deterministic estimation: sequential
least squares

Real-time deterministic estimation of the DT can be
performed by sequentially processing the observed DWIs
instead of waiting for all the available data. Specifically,
assumewe have determined the OLS (or theWLS) estimate dbi-
1 based on {y1, y2,…, yi-1}. If we now observe yi, an updated dbi
can be obtained without solving the linear Eq.(8) or (9). The
procedure is termed sequential least squares to distinguish it
from the original OLS and WLS (batch) approaches.

Considering the BLUE for the log-Rician case, the
sequential update equations that lead to the minimization of
the WLS error criterion JWLS=(y-Hd)T Cɛ

-1 (y-Hd) are given
by [29]

Estimator update:

bdi = bdi−1 + ki yi − hTi bdi−1
# $

ð10Þ

with

ki =
Si−1hi

r2i + hTi Si−1hi
ð11Þ

Covariance update:

Si = Ip − kihTi
! "

Si−1 ð12Þ

where the gain factor ki is a p×1 vector, with p=6 the
dimension of the DT, and Σi is the covariance matrix of dbi.
Note that ki has to be calculated before the estimator is
updated, i.e., Eq. (11) is computed before Eq. (10). The
sequential WLS estimator can only be obtained if the weight
matrix is diagonal [29]. That is, the model noise must be
uncorrelated, which is the case for the log-Rician model.

The update Eqs. (10–12) constitute the sequential WLS
estimator, which is actually the sequential BLUE for the DT
log-Rician model. The equations resulting from the sequen-
tial minimization of the OLS error criterion are the same as
Eqs. (10–12), but for the constant variance term σ2 (as
opposed to σi

2) in Eq. (11).
To start the recursion in both estimators, we need to

specify initial values for dbi-1 and Σi-1, so that ki can be
determined from Eq. (11) and then dbi from Eq. (10). A
common practice is to get it started with a batch estimate
based on p=6 observations where dbp is obtained from Eq. (9)
for the WLS case or Eq. (8) for the OLS. The covariance
matrixΣp is obtained asΣp=Cdbp=(H

TWH)-1 [29], where, in

this case, the diffusion–sensitization matrix is constructed
from p gradients. As stated before, the optimal weight matrix
is Cɛ

−1 in the WLS case, whereas for the OLS, Ip appears
instead. An alternative method of initializing the recursion is
to assign values for db0 and Σ0. This usually has the effect of
biasing the estimator toward db0 [29]. Typically, to minimize
the biasing effect, we chooseΣ0 to be large (little confidence
in db0) or Σ0=αIp, where α is large compared to the typical
eigenvalues of d, and also db0=0. This latter approach will be
adopted here.

2.4. Limitations of the existing methods

In Refs. [21,22], a real-time DT estimator based on the
Kalman filter was proposed. The Kalman filter constitutes an
extension of the sequential linear minimum squared error
(LMMSE) estimator to the case where the unknown parameter
evolves in time according to a dynamical model. Considering
the DTmodel, the parameter vector d is a constant. In this case,
the implementation of the Kalman filter leads to the sequential
LMMSE estimator which turns to a sequential LS estimator
since no prior information on the tensor statistics is considered
in the estimation problem (the Bayesian LMMSE estimator
behaves as the deterministic LS). Moreover, in their proposal,
Poupon et al. [21,22] do not fully address the true noise
statistics of the signal model. Considering the model in Eq. (6),
the formulation of the filter proposed in Refs. [21,22] is the
same as the sequential estimator given by Eqs. (10–12) with
σi=1,∀i. Thus, the Kalman filter in Refs. [21,22] is actually the
suboptimal sequential OLS, and its performance is, due to its
own nature, bounded by that of the batch OLS.

The method in Refs. [25,26] is the same as the one in
Refs. [21,22] except for the fact that an estimation of the
unnoisy signal Abi is used as the observation instead of the
noisy Mi. That is, the linear model in Eq. (6) is constructed
from the estimated signal levels as

yr = Hd + ɛ r ð13Þ

where the vector of restored log-attenuations is given by yr=
[y1

r, y2
r,…, yN

r ]T with yi
r=log(A0/Abi) and ɛ r is the vector of N

independent noise terms. The characterization of the noise
variance depends on the specific method used for signal
restoration. For the estimator in Ref. [27] (the one used in
Refs. [25,26]), Aja-Fernández et al. showed empirically that
the output of the filter could approximately be considered as
Rician, that is, the signal model in Eq. (5) applies as

bAi = jAi + nri j ð14Þ

where ni
r=nc,i

r +jns,i
r is a complex noise process whose real

and imaginary parts are independent Gaussian processes
with zero mean and variance σr

2, with σrbσ due to the
restoration process. Thus, for logarithmic noise in Eq. (13)
we have in most practical cases E{ɛr} = 0 and Cɛr = diag
(σ1

2, σ2
2, … ,σN

2) with

ricrr = Ai ð15Þ
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which also shows a strong dependence of the noise
variance with each DWI level. Thus, the sequential OLS
used in Refs. [25,26] for the estimation of the DT from
the restored data is also suboptimal. In order to obtain
optimal sequential estimators for the DT model, the time
(gradient)-changing noise variance must be included in the
estimation equations. With proper estimates of the σi

values, the BLUE — WLS — can be easily constructed.
Since the variance levels depend on the unnoisy diffusion
signals Ai (σi≈σ/Ai for measured data, σi≈σr/Ai for
restored data), an estimation Abi of these signals must be
provided in real time.

3. Optimal estimation framework with real-time
calculation of log-Rician noise levels

3.1. Overview of the proposal

The estimation framework proposed in this paper is
based on the optimal sequential BLUE (WLS) obtained
from Eqs. (10–12) (see Section 3). The sequential
algorithm proposed for the estimation of the DT is thus
the following:

1. Initialization: Set the initial values for db0 and Σ0.
2. For i=1,…, N, perform2:

(a) Obtain a real-time estimation of the unnoisy signal
Abi following the procedure described in Section 3.2.

(b) Use the obtained signal level to estimate the noise
variance σbi2 as described in Section 3.2.

(c) Use the variance estimation to compute the gain
factor ki using Eq. (11).

(d) Update the DT estimator using:
i. Eq. (10) if DT estimation is performed over
directly measured data.

ii. Eq. (10) substituting yi by yi
r=log(A0/Abi) if DT

estimation is performed over restored data.
(e) Update the covariance term using Eq. (12).

3.2. Real-time estimation of the noise variance

In Ref. [27], an estimator based on the LMMSE3 was
proposed for restoration of DWI data, together with the
empirical evidence described about the validity of Eq. (15).
Due to its high performance and computational efficiency,
we have adopted this method for optimal real-time
estimation of the signal values in our experiments. In
addition, this signal estimator is the one used in Refs. [25,26]
for the signal restoration process preceding the estimation of
the DT. The adopted method lets us obtain the signal level
for a given voxel Ai(x) from a closed-form analytical

expression based on sample local moments of the measured
signal Mi(x). The (square) signal LMMSE estimator is
obtained as

bA2
i xð Þ = hM 2

i xð Þi − 2br2 + j xð Þ M 2
i xð Þ −hM 2

i xð Þi
! "

ð16Þ

where 〈·〉 denotes a sample estimator calculated in a
neighborhood centered in x, and κ(x) is defined as

j xð Þ =
1 −4br2 hM 2

i xð Þi − br2
# $

hM 4
i xð Þi −hM2

i xð Þi2
ð17Þ

where we have substituted the variance of the complex
Gaussian process associated to the Rician envelope σ2 by an
estimator obtained from the given data: σb2.

A detailed survey including performance evaluation of
methods aimed at this variance estimation was presented in
Ref. [36] with the additional proposal of overperforming
approaches based on local statistics. Any one of these
methods could be incorporated to our estimation framework.
For our experiments, we have adopted the following
estimator over the baseline:

br2
¼
1
2
mode hM 2

0 xð Þi
% &

ð18Þ

which has been shown to provide accurate estimations in an
efficient way since no previous background segmentation is
needed [36].

The size of the neighborhood is a parameter that must be
selected by the user. A 7×7 neighborhood has been shown to
provide accurate estimates for both Abi2 and σb2 with voxels
whose side lengths were in the range 1.0–1.7 mm [27]. Thus,
we have set this size for our experiments. The noise variance
is finally calculated using Eqs. (16–17) for signal values and
Eq. (18) for the variance of the complex Gaussian process as

br2
i = br2 =bA2

i ð19Þ

if the DT is being estimated from the noisy measurements
Mi or

br2
i = brr2=bA2

i ð20Þ

for DT estimation over restored data using the LMMSE filter
in Ref. [27]. As for the estimation of σr, we perform over the
restored baseline as

br2
r =

1
2
mode hA2

0 xð Þi
% &

ð21Þ

4. Experimental validation

4.1. Implementation details

4.1.1. Diffusion gradient orientation sets
The choice of diffusion orientation sets for DWI has been

extensively studied in the literature. The standard procedure
consists in acquiring N measurements that are uniformly

2 N accounts for size of the diffusion gradient orientation set.
3 Up to this point, we have referred to the LMMSE estimator of the DT.

However, in this context, this concept applies to a different estimation
problem, i.e., obtaining of the unnoisy Ai levels from the noisy Mi.
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distributed in the unit sphere, so that the errors in measures
derived from the DWIs are independent of tissue orientation.
In the context of DWI, the problem of uniformly distributing
has to be posed with symmetry constraints since a measure in
the direction g=[gx, gy, gz]

T is equivalent to a measurement
in the direction −g. However, the formulation of the problem
is essentially the same. Some approaches have been
proposed to undertake this problem with these symmetry
constraints [37–39]. In fact, Ref. [39] publicly provides the
optimal diffusion sets for 3≤N≤150 as part of the Camino
Diffusion MRI Toolkit.

The approach in Ref. [39] yields optimized orientation sets
when one considers all the diffusion acquisitions. However, if
the acquisition is aborted before completion due to motion of
the patient, the subset of orientations will be directionally
biased and thus unusable for DT estimation [24]. Some
algorithms for generating uniform point sets whose ordered
subsets are also approximately uniform have been proposed
[24,39,40]. With these algorithms, the acquired orientation
sets for acquisitions aborted before completion are fairly
uniform, and real-time estimation can be easily performed.
All the methods perform in a similar way (see the comparison
in Ref. [24], Section 4). Since the validation of the method in
Refs. [21,22] was performed with the gradient orientation set
proposed in Ref. [40], we will adopt this scheme in our
experiments with synthetic data. Evaluation on real data will
be performed by adopting the scheme in Ref. [24] since it
allows for optimal reordering of existing orientation sets, is
faster to implement and can be computed in real time.

4.1.2. Initialization issues and experimental setup
In any implementation of a sequential estimation

algorithm, care must be taken in selecting proper initial
conditions. In order to fairly compare with the closest
approach [21,22], we will use the initialization constraints
proposed in this work. Thus, the initial guesses db0 and Σ0

are, respectively, set to the null vector and the identity

matrix. Since the eigenvalues of the DT typically lay close to
10−3, this initialization provides little confidence on the
initial estimate and thus avoids any bias toward db0.

In order to evaluate the proposed WLS estimators, we
have performed some experiments over synthetically
generated data under the log-Rician statistics. The algorithm
in Refs. [21,22] and the one in Refs. [25,26] have also been
evaluated for the sake of comparison. Since for isotropic
diffusion the variance of the log-Rician noise remains
constant across the DWIs (WLS ≡ OLS in this case), we
have tested the behavior of both algorithms for nonisotropic
tensors. Consequently, we used Eqs. (1) and (5) to synthesize
the noisy DWIs from two nonisotropic tensors with
eigenvalues λi=[2·10-3, 0.2·10-3, 0.2·10-3] (λ1Nλ2=λ3,
prolate tensor) and λi=[1.1·10-3, 1.1·10-3, 0.2·10-3] (λ1=λ2-
λ3, oblate tensor). The scanner parameters were selected as
b=1500 s/mm2 and N=60 with the gradient orientation set
proposed in Ref. [40]. Simulations have been performed for
different SNR values ranging from 2 to 15 dB in 0.5-dB
steps. The SNR has been calculated as 10log10(S

2/σ2), with
S=min(Ai). One thousand experiments have been carried out
for each SNR value, with random orientation of the
simulated tensors for each experiment.

We have also investigated the performance of the
proposed scheme when estimating the DT from a real DWI
volume. We use a SENSE EPI data set scanned in a General
Electric 3.0-T Signa Excite Echospeed system with eight-
channel head-coil (sequence: maximum gradient amplitudes,
40 mT/M; rectangular field of view of 220×165 mm; slice
thickness, 1.7 mm; receiver bandwidth, 6 kHz; echo time, 70
ms; repetition time, 2500 ms). It comprises 8 nonweighted
baseline images and 51 gradient directions — distributed on
the sphere using the electric repulsion model with antipodal
pairs [37,38] — which have been reordered for optimal
sequential estimation following Ref. [24]. The voxel
dimension is 0.9375×0.9375×1.7 mm3 with an image matrix
size of 256×256 and 81 slice locations. The b-value for the
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Fig. 1. MSE of the estimation vs. iteration index (i=10,…, 60) for simulated prolate (left) and oblate (right) tensors with SNR values ranging from 2 to 15 dB.
Legend keys: SWLS-m: proposed sequential WLS estimator operating over directly measured data; SOLS-m: sequential OLS estimator operating over directly
measured data (Kalman filter in Refs. [21,22]); SWLS-r: proposed sequential WLS estimator operating over restored data; SOLS-r: sequential OLS estimator
operating over restored data (Kalman filter in Refs. [25,26]).
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DWI acquisition is set to b=586 s/mm2. We aim at extending
the covered range of acquisition conditions by employing
different values for the synthetic (b=586 s/mm2) and in vivo
(b=1500 s/mm2) experiments. The value used for the latter is
closer to the one used in Refs. [21,22] for DT estimation. This
guarantees a fair comparison under conditions considered
therein, which correspond to high SNR values. On the other
hand, synthetic data were generated using b=1500 s/mm2 in
order to illustrate the performance of our proposal in
situations where high angular contrast is needed and, thus,
higher b-values are necessary. This way, low SNR conditions
are also considered since this selection leads to higher
attenuations of the diffusion images.

4.2. Results and discussion

4.2.1. Synthetic data
In Fig. 1, the mean square error (MSE) of the estimation

has been plotted vs. the iteration index i=10,…, 60
considering all the SNR values on average. The error
has been computed as the norm of the difference between
the actual estimate for iteration i (dbi) and the real value d.
Results for directly measured data reveal a higher

performance of the proposed sequential WLS estimator
(SWLS-m in figure legend) as compared with the OLS
estimator (SOLS-m, the Kalman filter proposed in Refs.
[21,22]). As for the estimation from real-time restored
data, the proposed method (SWLS-r in figure legend) also
outperforms the Kalman filter presented in Refs. [25,26]
(SOLS-r), with a more noticeable performance improve-
ment in this case.

The analysis of the results in Fig. 1 leads to the following
conclusions:

• Our algorithms achieve the highest performance
reached by the so far proposed Kalman filters
[21,22,25,26], with a reduced number of acquisitions.
This highest performance coincides with the one of the
batch OLS estimator in both cases (directly measured
and restored data) and is obtained for N=60 iterations.
Considering the estimation of prolate tensors from
directly measured data, our WLS outperforms the
batch OLS before acquiring the 20th DWI. This means
that the method in Refs. [21,22] needs at least 40 DWIs
more to perform as ours. If we consider the estimation
of prolate tensors from real-time restored data, the
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Fig. 2. Two-dimensional histograms of the distribution of the pairs (FA, MD) from the proposed algorithms (left) and the methods in Refs. [21,22] and Refs.
[25,26] (right). Distributions for nonrestored data are shown in the upper part of the figure, while the lower part shows those for restored data. Results are
presented for iteration i=15. Ground truth centroids are represented as green dots.
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estimation error obtained with our method equals that
of the batch OLS at the 12th DWI, that is, the method
in Refs. [25,26] needs 48 more acquisitions to equal
the performance of our sequential WLS.

• The higher performance of our algorithms is more
noticeable for prolate tensors, especially when data
restoration is performed during the estimation process.
For oblate tensors, differences exist, but they are
lighter, especially for the unrestored case; in this
scenario, the iteration at which our algorithm reaches
the performance of the batch OLS lays between i=45
and i=50. However, on real-time restored data, the
performance improvement is higher since the batch
OLS performance is reached at the 25th DWI.

• The higher performance for prolate tensors can be
explained as follows: By considering the time-
varying noise variance, our algorithms tend to
behave as the optimal WLS. On the other hand,
the performance of the methods in Refs. [21,22] and
Refs. [25,26] will always be below that of the OLS
since a constant variance is assumed. When prolate
tensors are to be estimated, the differences between
WLS and OLS are even more pronounced. The main
reason is that the noise variance has higher
variability for prolate tensors, which is due to the
abrupt changes that the DWI values Ai suffer along
the acquisition process4.

• Finally, the figures show that the differences between
the sequential WLS and OLS estimators are more
noticeable when real-time signal restoration is
performed during the estimation process; this can
be interpreted as follows: when the DWIs are
previously denoised, the estimation of the DT is
performed on observations with higher SNR. The
main difference between the OLS and WLS
estimation strategies resides in the fact that WLS
estimation uses the inverse of the noise variance as a
weighting term. The inverse function is very much
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Fig. 3. MSE of the estimation vs. iteration index (i=10,…, 51) for the
acquired in vivo volume. Legend keys: SWLS-m: proposed sequential WLS
estimator operating over directly measured data; SOLS-m: sequential OLS
estimator operating over directly measured data (Kalman filter in Refs.
[21,22]); SWLS-r: proposed sequential WLS estimator operating over
restored data; SOLS-r: sequential OLS estimator operating over restored
data (Kalman filter in Refs. [25,26]).
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Fig. 4. MSE of FA vs. iteration index (i=10,…, 51) for the acquired in vivo
volume. Legend keys: SWLS-m: proposed sequential WLS estimator
operating over directly measured data; SOLS-m: sequential OLS estimator
operating over directly measured data (Kalman filter in Refs. [21,22]);
SWLS-r: proposed sequential WLS estimator operating over restored data;
SOLS-r: sequential OLS estimator operating over restored data (Kalman
filter in Refs. [25,26]).
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Fig. 5. MSE of MD vs. iteration index (i=10,…, 51) for the acquired in vivo
volume. Legend keys: SWLS-m: proposed sequential WLS estimator
operating over directly measured data; SOLS-m: sequential OLS estimator
operating over directly measured data (Kalman filter in Refs. [21,22]);
SWLS-r: proposed sequential WLS estimator operating over restored data;
SOLS-r: sequential OLS estimator operating over restored data (Kalman
filter in Refs. [25,26]).

4 For prolate tensors, the main eigenvector determines the signal
attenuation Ai/A0. If this eigenvector is aligned with a specific gradient, the
attenuation is maximal, and Ai will be close to 0. If, on the other hand, both
vectors are orthogonal, minimal attenuation is achieved, and Ai will be
close to A0. This involves a high variability of σi ~ 1

Ai
along the whole

acquisition process.
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nonlinear for smaller variances, so differences with
OLS are more noticeable there.

As an illustration, the distribution of two tensor in-
variants, the mean diffusivity (MD) and the fractional

anisotropy (FA), is depicted in two-dimensional histo-
grams for iteration index i=15 (Fig. 2). The MD for
both simulated tensors is 0.8·10−3 mm2/s. As for the FA,
we have FA=0.8911 (prolate tensor) and FA=0.5738
(oblate). These original values are depicted as green dots

Our method Method in [21,22]

R
G

B
M

D
FA

Measured data

Fig. 6. FA, MD and RGB maps (slice #40 of the data set) estimated over directly measured data using our proposal (left) and the one in Refs. [21,22] (right) at
iteration i=10.
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in Fig. 2. The upper and lower parts of Fig. 2 reveal a
respective improvement in both bias and variance obtained
from our methods in comparison to those in Refs. [21,22]
and Refs. [25,26].

4.2.2. Real data
The MSE of the estimation vs. the iteration index

i=10,…, 51 is presented in Fig. 3 for the real data set. The
error has been computed from the DT estimation as in

Our method Method in [25,26]

R
G

B
M

D
FA

Restored data

Fig. 7. FA, MD and RGB maps (slice #40 of the data-set) estimated over restored data using our proposal (left) and the one in Refs. [25,26] (right) at
iteration i=10.
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Section 1, considering as a ground truth the batch WLS
estimation for N=51 calculated over the same volume
which was previously filtered with the joint LMMSE5

filter proposed in Ref. [41]. Our method outperforms
those previously proposed as can be inferred from the
figure, with a more noticeable improvement when the
estimation is performed over restored data.

The quantitative comparison between our method and
those in Refs. [21,22,25,26] has also been performed in
terms of FA and MD. Fig. 4 shows the MSE obtained from
FA, while MD results are shown in Fig. 5. The higher
performance of our method can be observed in both cases.
However, the evolution of the performance improvement
during the acquisition is different for both magnitudes. With
respect to the FA, the performance of the sequential OLS
estimators in Refs. [21,22] and Refs. [25,26] tends to
converge to the one obtained from our method as the number
of processed DWIs increases. As for the MD, such a
convergence is not clearly appraised.

As a concluding illustration, Fig. 6 shows the FA, MD
and RGB maps for the central slice (#40) of the data set
obtained from application of our method over directly
measured data at iteration index i=10. The maps obtained
from the method in Refs. [21,22] are also presented for the
sake of comparison. Finally, Fig. 7 represents the counterpart
of Fig. 6 when real-time restoration is performed during
estimation (maps obtained with the method in Refs. [25,26]
are also presented). Results indicate a less spotty result with
our algorithm using both the unfiltered and filtered data. The
color representation makes this effect more pronounced due
to the higher sensitivity of the human visual system to colors
than to gray levels.

5. Conclusion

We have proposed an optimal real-time estimation
framework for the DT in DWI acquisitions following the
log-Rician noise model. Within this framework, the
estimation of the DT can be performed even when the data
are real-time restored. By considering the changes that the
noise variance suffers across DWIs, our estimation method-
ology implements the optimal BLUE for both directly
measured and real-time restored data. In order to estimate the
time-changing noise variance, the unnoisy diffusion levels
are additionally needed in real time. Our method includes a
simple LMMSE estimator for these signal levels which can
be easily incorporated to the real-time framework since it is
based on local sample statistics.

Results on both synthetic and real data have shown that
our method outperforms the so far proposed (Refs. [21,22]
for measured data and Refs. [25,26] for real-time denoised
data). These methods are suboptimal for the log-Rician

(denoised log-Rician) model since they assume the same
noise variance for each log-DWI (restored log-DWI) and,
thus, their performance is the same as the sequential OLS.
Our framework incorporates the specific noise statistics of
the acquired or denoised data to the estimation process,
leading to the implementation of optimal estimators.

Real-time estimation constitutes an important tool in
DWI acquisition either for tuning up the diffusion
parameters or as a feedback source of information on the
acquisition process. Currently, due to time restrictions, DWI
data acquisitions are usually accelerated by using parallel
MRI (pMRI) reconstruction techniques, which allow
increasing the acquisition rate via subsampled acquisitions
of the k-space. The development of optimal real-time
estimators specifically focused on pMRI schemes constitutes
a challenging task, mainly due to the following factors: (1)
The underlying noise model is not as simple as in single-coil
acquisitions since spatial nonstationarities do exist. (2)
Those optimal estimators for the log-Rician model are
suboptimal for some pMRI reconstruction schemes such as
the fully sampled sum of squares [32] or the generalized
autocalibrating partially parallel acquisitions scheme [42].
(3) The data to be processed at each iteration of the
acquisition multiply by the number of coils, thus limiting the
real-time nature of the estimator. (4) The acceleration
schemes for image reconstruction constitute an additional
limitation for real-time estimation since they reduce the
available time for online processing. Currently, we are
investigating the possibility of developing real-time optimal
estimators under these scenarios.
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