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Abstract
Purpose A method to register endoscopic and laparoscopic
ultrasound (US) images in real time with pre-operative com-
puted tomography (CT) data sets has been developed with the
goal of improving diagnosis, biopsy guidance, and surgical
interventions in the abdomen.
Methods The technique, which has the potential to operate
in real time, is based on a new phase correlation technique:
LEPART, which specifies the location of a plane in the CT
data which best corresponds to the US image. Validation of
the method was carried out using an US phantom with cyst
regions and with retrospective analysis of data sets from ani-
mal model experiments.
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Results The phantom validation study shows that local trans-
lation displacements can be recovered for each US frame with
a root mean squared error of 1.56 ± 0.78 mm in less than 5
sec, using non-optimized algorithm implementations.
Conclusion A new method for multimodality (preoperative
CT and intraoperative US endoscopic images) registration
to guide endoscopic interventions was developed and found
to be efficient using clinically realistic datasets. The algo-
rithm is inherently capable of being implemented in a paral-
lel computing system so that full real time operation appears
likely.
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Introduction

Minimally invasive procedures, such as endoscopic or laparo-
scopic interventions, have increased in volume, partially due
to the availability of real time local imaging techniques that
increase the operator’s confidence. Ultrasound is often used
since it offers a flexible, easy to integrate, and real time
imaging source that penetrates into tissue, thereby comple-
menting standard optical (video) imaging. Further benefits
may accrue from incorporating pre-procedure data; the gap
between novices and expert operators can be reduced when
using such “Image Registered” systems [15]. These systems
are based on the use of preoperative volumetric CT (or MRI)
images, loosely registered with the real time ultrasound image
(Fig. 1). The operator can navigate more effectively and better
understand the content of the real time ultrasound image by
comparing it to a synthetic CT image formed in the plane
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Fig. 1 Image Registered system. The system uses an initial rigid body
registration to find the global transformation between the preoperative
CT scans and the OR coordinate system. a Laparoscopic examination
of a kidney tumor. The tumor is shown both in the US image and the

reformatted preoperative CT. b Scan of the branch point between the
celiac and the aorta. The image shows the out-of-plane misalignment
incurred by the system

of the preoperative volume corresponding to the US plane.
Using a calibrated electromagnetic tracker, the registration
error of this reference image is less than 5mm [2], which is
adequate to guide many surgical procedures.

A more ambitious goal is to improve the registration by
doing a continuous real-time local correction based on incre-
mental shifts between the ultrasound image and a subvo-
lume of the CT data reformatted in the coordinate frame of
the ultrasound. This approach neglects the possibilities of
non-uniform warping or movement of tissue, but merely
accommodates local displacements between the data from
the two modalities. However, the image matching is restricted
to a local region, so improvement is likely.

For practical utility we require that the registration occurs
quickly: ideally with no lag, but within a few seconds at worst.
Also, if the registration correction is rapid, organ shifts due
to breathing (and other motions) may easily be accommo-
dated. We note that our registration problem involves fitting
a 2D slice to a 3D volume. Although other groups are suc-
cessfully studying the registration of 3D ultrasound to 3D
preoperative volumes [7–9], clinical laparoscopic and endo-
scopic procedures are carried out with 2D US probes; this is
not likely to change in the near future. Other authors have
successfully applied different registration strategies using a
collection of tracked 2D transabdominal ultrasounds and CT
[18,20]. Still, these works require a set of US images before
the registration can be accomplished and the techniques are
very demanding computationally.

We present here a method that is designed to register US
images as they become available during the course of the
intervention. We propose a new registration method based
on phase correlation (PC). The direct application of PC to
our problem is complicated by the different signal charac-
teristics between the preoperative CT (or MRI) source, and
the US source. Also, a successful approach must accom-
modate missing information in the intra-operative US im-
ages due to shadowing and phantom reflections caused by

non-orthogonal incident angles between the US wave and
the imaged object surface.

Background

The increasing use and quality of radiologic techniques
(CT, MRI, SPECT, PET) for screening and diagnosis will
stimulate the demand for minimally invasive biopsy and
intervention. While these procedures might optimally be con-
ducted inside the imaging device itself, practical consider-
ations, including convenience and cost, will continue to limit
“in-scanner“ approaches. Thus endoscopic and (to some ex-
tent) laparoscopic imaging are likely to be more broadly ap-
plied to the follow-up diagnosis of disease and the staging of
care. Also, optical biopsy techniques, which can use smaller
probes, may be increasingly utilized.

One approach to improving the guidance of instruments
in real time is the use of intra-procedure ultrasound. While
ultrasonic laparoscopic and endoscopic devices are widely
available, they have not been maximally adopted by gast-
roenterologists and surgeons due to the long learning curve
and lack of confidence in ultrasound interpretation, which
manifests as difficulty in navigation and targeting for the
probe to reach the radiologically determined target. We have
therefore developed Image Registration techniques [2,15]
which show the position and orientation of the ultrasound
probe in anatomic context and display of re-formatted CT
(or MR) reference images to improve the accuracy and con-
fidence of physician operators (see Fig. 1b). The Image Reg-
istration approach is based on two assumptions:

1. The operator may function most effectively when pre-
sented with a simplified representation of the anatomy
showing only key structures to guide probe positioning,
and
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Table 1 Main attributes for a
imaged registered system for
laparoscopic and endoscopic
interventions

Subsystem Key attributes

Segmentation Semi-automatic, rapid

Registration Rapid set up, accurate, complaint with patient and organ motion

EM tracking Noise-free, unobtrusive, easily implemented under sterile conditions

Display Intuitively understood, high quality, real-time (lag free)

2. Real time display of the position and orientation in this
anatomic context may be more efficient than the use
of more complex 3D plane displays of the radiologic
information.

That is, Image Registration techniques may have added
value because the instrument position and orientation is dis-
played accessibly and understood easily and intuitively.

Experimental studies in porcine models have shown that
both laparoscopic ultrasound (LUS) and endoscopic ultra-
sound (EUS) users are significantly more effective at
identifying multiple anatomic targets in a timed trial using the
Image Registration system [16]. Kinematics measurements,
which record and analyze position, orientation, and motion
of instruments, have been shown to correlate well with the
expertise of the user [14]. Experiments comparing LUS and
EUS user performance with and without Image Registration
(IR) show that the IR system permits novice users to per-
form like experts in some tasks, and even appears to improve
the performance of experts in limited tests [15]. Users over-
whelmingly preferred the Image Registration approach for
both endoscopy and laparoscopy.

Functionally, our system requires four capabilities:

1. construction of a useful model from the pre-procedure
3D data (Segmentation),

2. alignment and fitting of the model to the real time anat-
omy (Registration),

3. determining the position of the instruments (Tracking),
and

4. presenting the information to guide the procedure
(Display).

A typical screen-shot of the display of our system is shown
in Fig. 1a. Table 1 shows key attributes for these sub-system
functions to make a successful Image Registration system.

The method presented in this paper addresses the improve-
ment of registration for small shifts from the initial registra-
tion. The most relevant of these motions is the out-of-plane
mis-registration between the US image and the reformatted
CT image. While in-plane shifts can more easily be recovered
by the operator without a huge mental burden, out-of-plane
misalignments may be critical for clinical interpretation. The
integration of such a registration technique has to be done in
the main tracking loop, so continuous updates can be made

available as new US images provide more information about
the mis-registration that the system is incurring.

Traditional phase correlation

Phase correlation is a well-known image registration method
that exploits the Fourier shift theorem. Even though PC is
limited to estimating translational shifts between two images,
this approach is robust to frequency-dependent noise and lim-
ited image overlap areas. Furthermore, it can be calculated
rapidly by means of the fast Fourier transform (FFT). This
method can also achieve sub-pixel accuracy by using spec-
tral techniques [12] or by means of least squares fitting of a
Dirichlet function [3].

Let fCT(x) and fUS(x) be two n-D images defined in Rn ,
where n = 2 or 3. In our case, fCT and fUS will be the
CT and US image respectively. For now we will also as-
sume that both images have the same dimensionality. Let
f̂CT(u) = F{ fCT} = | f̂CT|e j!CT and f̂US(u) = F{ fUS} =
f̂US = | f̂ |e j!US be the corresponding Fourier transform of
the images, where u is the spatial frequency coordinate. Let
us assume that the CT image is shifted in the spatial domain
fCT(x − x0) where x0 is a translation. The normalized cross
power spectrum, i.e the PC function, is defined as

" fCT fUS(u) = f̂CT(u) f̂US(u)∗

| f̂CT(u) f̂US(u)∗|

= e− juT x0 e j!CT(u)−!US(u), (1)

where ∗ denotes the complex conjugate and uT x is the inner
product between u and x0. As we can see, the PC, ", be-
tween the US image and the translated CT image is given by a
complex exponential of a linear term incorporating the
translation. However the phase discrepancy between the
images, !d(u) = !CT(u)−!US(u), appears in the PC func-
tion as a nuisance term. Therefore, the PC function in the
spatial domain, "(x), is not merely a Dirac delta centered at
x0 but additional terms appear complicating the estimation
process.

The phase discrepancy term, !d(u), arises from several
sources: (1) Noise in both images. (2) Deformations between
the images that cannot be accounted by a simple translation.
(3) Differences between the phase signatures of the images,
which are particularly evident when the images come from
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Fig. 2 Simulated ultrasound
image (a) and the corresponding
scattering map (b). These
images are used to illustrate the
phase discrepancy associated to
the use of different modalities.
The scattering map is a density
map of the scatters element that
forms the US signal. In our
example, the scattering map can
be associated with a CT image,
or at least it has phase properties
that are closer to a CT image of
the same phantom

Fig. 3 Traditional phase correlation, " fCT fUS , between images a and
b in Fig. 2 when a displacement x0 = [15, 10] is applied

different imaging modalities. Since noise is not correlated
with the signal, it is therefore easier to manage [12]. However,
phase discrepancy due to high order deformations and mul-
timodality imaging exhibits structured components that may
yield a concentration of the phase spectrum energy in a har-
monic different from that which corresponds to the desired
translation.

Since we seek to register images from different modal-
ities, phase discrepancy makes PC, as defined in Eq. (1),
impractical. To illustrate this, we simulated an US image of
a cyst phantom using the simulator field II [4] (hereon we
will use this example to illustrate our method). The simula-
tion is based on a scattering map (Fig. 2b). This represents
the power of the scattering sites distributed in the medium
and is thus a realization of the underlying tissue density (and
therefore closer to the CT image properties). Let us assume
that the scattering map is translated x0 = [15, 10] in pixel
units with respect to the ultrasound image. Figure 3 shows
the PC function in the spatial domain when traditional PC
is applied to the translated scattering map and the simulated

Fig. 4 Approach to multimodality registration based on phase
correlation

ultrasound image. Instead of a Dirac delta function at x0, the
PC function exhibits multiple local maxima and the global
maximum is not located at the corresponding displacement
location as desired.

In summary, traditional PC methods cannot be directly
applied to multimodality 2D-to-3D registration due to:

– Different phase spectra content in the signals to regis-
tered: CT or MRI and US

– Different signal dimensionality: we have to perform a 2D
to 3D registration where the US data is given in a 2D plane
with a given known orientation and the CT data is given
in a 3D grid that has an initial positioning with respect to
the 2D plane based on a initial registration process when
the patient is place in the OR table.

Method

Here we present a new PC-based method which offers a
robust approach to multimodality registration, specially for
the registration of US to CT. Figure 4 outlines our approach,
which we now discuss in detail:

Phase spectrum compensation

The first step of our method is to produce phase compensation
between the CT and the US signal by preprocessing the sig-

123



Int J CARS (2009) 4:549–560 553

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
US signal
Estimated std.
Scattering signal

Strong reflector 
Hyperechoic region

Hypoechoic
region

Fig. 5 Estimated scattering map, σUS(x), after decompression and
variance estimation. Left Scattering map image corresponding to the
ultrasound image shown in Fig. 2a. Right Horizontal line comparing

the US signal, the estimated scattering map by the proposed variance
estimator and the real scattering map

nals from both modalities. This step is aimed at suppressing
the phase discrepancy term, !d(u).

Ultrasound preprocessing

Our approach is similar to the one followed by other authors
[7,8] where the registration is achieved using edge informa-
tion. The ultrasound signal is generated by a scattering pro-
cess which causes characteristic speckle noise. Although the
speckle carries useful information about the object medium,
this information has a phase component that is not present
in the CT image; therefore reducing the speckle component
can improve the registration process.

Before performing the edge detection, the US signal is
processed in the following manner:

– The RF ultrasound signal is usually compressed to accom-
modate the dynamic range of the display device. This
compression has been suggested to be a logarithm map-
ping [5], fUSc = D log( fUS) + C . To recover the RF
signal we compute the compression parameter D using
the method proposed by Kaplan and Ma [5] based on
second order moment of the log-compressed Rayleigh
distribution.

– After that, we estimate the scattering power map, σUS(x),
from the uncompressed ultrasound image using the
known statistic of the radio frequency (RF) envelope mag-
nitude. Under ideal conditions and assuming that the
medium contains a high number of randomly distributed
scatterers, the ultrasound signal follows a Rayleigh dis-
tribution [17]. The Rayleigh distribution is specified by
one parameter, the variance or power of the scatters, that
can be estimated in a Maximum-Likelihood sense as

σUS(x) =

√∑
xi ∈Nx

f 2
US(xi )

2N
, (2)

where Nx is a squared neighborhood around location x
and N is the number of samples in the neighborhood.
Recovering this variance yields an estimation of the scat-
tering map for that ultrasound image.

An edge detection based on the magnitude of the gradient
of the estimated scattering signal, σUS, is then applied. To
illustrate this process, Fig. 5 shows the estimated σUS for
a horizontal scan-line corresponding to the cyst phantom
shown in Fig. 2a. We observe that the estimated signal closely
approximates the scattering map. The edge detection is per-
formed over the estimated scattering map. The edge image is
smoothed with a Gaussian kernel to remove high frequency
components corresponding to spurious edges.

CT preprocessing

The CT is reformatted in the coordinate system of the ultra-
sound B-scan plane using the tracking information [2]. Figure
6a shows an schematic view of the frame attached to the US
probe, as defined by the tracking information, that is used to
locally reformat the CT volume. Figure 6b shows the cor-
responding reformatted CT as an overlay. Each image tile
corresponds to one z-slice in the local CT volume. A field-
of-view spanning a large enough region is usually defined
based on the expected maximum displacement that can be
recovered.

Since boundaries between tissues with different CT den-
sities may show an acoustic impedance, we define acous-
tic interfaces as areas with a gradient magnitude in the CT.
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Fig. 6 CT volume reformatted
in the local frame defined by the
US probe. a shows an
illustration of the US B-scan
plane and the local frame
attached to the plane that is used
to reformat the CT volume.
b shows a tiled view of the
reformatted CT images
corresponding to the US plane
shows in a

Fig. 7 Phase correlation after phase spectrum compensation (a) and after spectral projected phase correlation (b). Note how spectral projection
reduces the amount of noise in the phase correlation image; however, two local maxima still remains

Following on with our illustrative example, Fig. 7a shows
the result of applying the traditional PC method after the
phase spectra has been compensated. In this case, the global
maximum is close to the ideal solution. Let us denote gCT
and gUS as the resulting signals after the phase spectrum
compensation (PSC) process for the CT and the US images
respectively.

LEPART: Low-pass spEctral Phase correlAtion with
HaRmonic selecTion

Although the previous preprocessing introduces a normali-
zation of the signal phase spectra, additional terms remain
that preclude a robust estimation of the translation using
the traditional PC method. To overcome this problem, we
have developed a new method based on PC named LEPART.
This method has two major components: (1) low dimensional
spectral projection of the PC function into a rank-1 approxi-
mation and (2) harmonic selection.

Spectral projection

This stage follows the method proposed by Hoge [12] for
accurate PC. In 2D, the PC matrix is ideally a rank-1 matrix;
therefore the estimation of the displacement can be done by
finding the best rank-1 matrix that approximates the esti-
mated correlation matrix from the data. This can be achieved
by means of singular value decomposition (SVD). SVD is a
spectral technique that projects a matrix onto a set of r orthog-
onal eigenvectors that span the closest linear r -dimensional
subspace to that matrix. In this case, finding the largest sin-
gular eigenvectors (one per spatial dimension) yields the best
rank-1 approximation to the correlation method. This method
has been also extended to deal with multiple dimensions [13]
by means of the higher-order SVD [1]. Before applying the
higher-order SVD, the PC is masked with a rectangular win-
dow to remove high frequency components that introduce
noise into the projection and spectral distortion due to ali-
asing and border effects (as well as reducing the number of
data points to be analyzed through the higher-order SVD).
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Fig. 8 Harmonic selection for the projected phase correlation. a and b shows the phase of the filtered eigenvectors q f
x (ux ) and q f

y (uy), respectively.
c and d shows the Fourier transform of qx (ux ) and qy(uy), respectively

The windowed PC is defined as

"w
gCTgUS

(u) = $Bc (u1) · · · $Bc (un)"gCTgUS , (3)

where $Bc (ui ) is the rectangular function along dimension
ui with width 2Bc. Then, the windowed PC is decomposed
using the higher-order SVD

{qi (ui )}n
i=1 = hoSVD("w

gCTgUS
(u)), (4)

where qi (ui ) is a complex eigenvector that spans the pro-
jection of !w(u) along the dimensions i . The projected PC
for our example is shown in Fig. 7b. It is interesting to note
that a clear global maximum exists, although other extrema
appear. The translation for each dimension can be indepen-
dently worked out with sub-pixel resolution by fitting a line
to the unwrapped phase of each 1D signal qi (ui ) in a least
squares sense. This is one of the main advantages of the spec-
tral projection method. Following with our example, Fig. 8a
shows the unwrapped phase of the eigenvectors correspond-
ing to the axis x and y.

Harmonic selection

As shown in Figs. 7b and 8a, the unwrapped phase of qi (ui )

can be in some instances highly non-linear. This non-lin-
ear behavior is due to the presence of several harmonics
in the projected phase that correspond to multiple potential
fittings. Harmonics can appear due to remaining structured
components of the phase discrepancy. To increase the robust-
ness, we have therefore implemented a harmonic selection
process.

The harmonic selection stage works as follows. The
optimal harmonic, vh

i , is computed by finding the principal
harmonic of qi (ui ) by means of its Fourier transform

vh
i = arg max H(vi )|F{qi (ui )}|, (5)

where vi is the frequency coordinate of qi and H(vi ) is a
Hamming window that is designed to give more importance
to low frequency harmonics, therefore smaller rather than
larger displacements. Once the harmonic frequency has been
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found, the filtered eigenvector q f
i (ui ) is computed by apply-

ing a band pass filtered centered at vh
i .

q f
i (ui ) = F−1{$Bhc(vi − vh

i )F{qi (ui )}}, (6)

where Bhc is the bandwidth of the bandpass filter.
The result of applying the harmonic selection to our exam-

ples is shown in Fig. 8. The Fourier magnitude spectra of
qx (ux ) and qy(uy) is shown in Fig. 8c, d, respectively. The
filtered eigenvectors are shown in Fig. 8a, b for the dis-
placement in x and y respectively. It is noticeable that the
phase term is quite linear after the harmonic selection and
comparably close to the linear phase induced by the applied
translation.

Linear least squares fitting

As mentioned above, the last step in LEPART is a least
squares fitting of a line to the unwrapped phase of q f

i (ui )

for each axis. The slope of the fitting corresponds to the esti-
mated translation term x̂0 under consideration.

2D/3D registration

The approach outlined so far assumes that the images to be
registered have the same dimensionality. In our problem this
is not the case: the ultrasound image is defined in a 2D plane
and the CT image is a 3D volume reformatted in the coordi-
nates defined by the ultrasound plane.

The ultrasound B-scan plane can be rewritten as a 3-
dimensional function by means of the discrete delta function
as

gUS(x1, x2, x3) = gUS(x1, x2)δ(x3), (7)

where (x1, x2, x3) is the 3D discrete coordinate system of the
reformatted CT. Then, the 3D Discrete Fourier transform of
Eq. (7) is given by

ĝUS(u1, u2, u3) = ĝUS(u1, u2) ∗
L−1∑

k=0

δ

(
u3 − 2πk

L

)
, (8)

where δ is the discrete delta function [11], ∗ is the convo-
lution operator and L is the number of slices along the u3
axis. In summary, the 3D Fourier representation of the 2D
ultrasound plane is, no more no less, the replication the 2D
spectrum along the new axis. Then, the LEPART method is
applied in 3D, where the 3D Fourier representation of the
US signal is constructed by replicating its 2D spectrum. The
spectrum replication comes at no additional computational
cost.

In summary, LEPART is a PC method for the registration
of 2D ultrasound to 3D CT. After the PSC stage, the ultra-
sound edge image, gUS(x1, x2), is transformed to the Fourier
domain and the spectrum is replicated according to Eq. (8).

Fig. 9 Model of the abdominal US phantom used for validation. The
blue phantom (Blue Phantom, Kirkland, WA) is made of silicone with
acoustic properties similar to human tissue. The phantom has different
cystic regions with different echogenicity. The phantom was mounted
on a casing simulating a human torso that can be used to explore the
region using either an endoscopic or laparoscopic probe

The CT edge volume, gCT(x1, x2, x3), is reformatted in the
local coordinate frame given by the US and is also trans-
formed to the Fourier domain. Then, LEPART is applied as
described in “LEPART: Low-pass spEctral Phase correlAtion
with HaRmonic selecTion”.

Results

Phantom study

The adequacy and accuracy of the proposed method for
endoscopic and laparoscopic surgery has been validated by
means of an abdominal ultrasound phantom (Fig. 9). The
phantom consists of a ultrasound pad with several hypo and
hyper-echoic regions. The phantom was scanned in a
Siemens Sensation Somaton 64 Slice CT scanner with
0.6 mm isotropic voxel size. A sequence of ultrasound
images have been acquired using a laparoscopic US probe
(BK-Medical). The images were taken under controlled con-
ditions so registration error was minimal. Additional, man-
ually extracted features in both the CT and US were used
to increase the registration accuracy between both modali-
ties. This was considered our gold standard for validation.
We selected 5 ultrasound slices where different tumors were
visible. The CT was reformatted in a 0.3 mm isotropic grid
and 20 mm × 5 mm × 20 mm margins were added in x , y
and z direction respectively for each US image. We drew 500
realization for each location of uniformly random shifts in
the range −5 to 5 mm. The parameters used in our algorithm
were: Bc = π/8, Bhc = π/12, Nx = [7, 7]. The registration
error results are shown in Table 2.

LEPART with PSC achieves a registration whose RMS
error is less than 2 mm. LEPART seems to be a robust ap-
proach to multimodality image registration even when PSC is
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Table 2 Numerical analysis of LEPART as a robust multimodality registration method by Monte Carlo simulation

Method RMS Registration Error (mm) Execution timea (s)

Mean SD Min Max

Spectral PC [13] without PSC 12.997 0.178 12.896 13.281 3.73

Spectral PC [13] with PSC 3.376 2.599 1.135 14.241 3.85

LEPART without PSC 1.799 0.681 0.328 4.856 3.92

LEPART with PSC 1.558 0.781 0.179 4.414 4.25

a Mean execution time in an Intel Centrino 2 GHz and Matlab implementation

Fig. 10 Example of one of the
registrations for one of the
tumor a before and b after
applying LEPART with PSC

not applied, therefore accuracy can be sacrificed for the sake
of performance. We have noticed that Bc plays an important
role in finding a stable solution, albeit limiting the range of
displacement that can be recovered. Increasing Bc above π/4
leads to unstable results. The results for one of the realiza-
tions before and after registration are shown in Fig. 10.

Retrospective study

We have tested our method under real surgical conditions
using a retrospective specimen abdominal study. A laparo-
scopic experiment was conducted in a porcine model using
the system described in Sect. 2. A preoperative CT scans was
acquired with a Siemens Sensation 64 with contrast-enhance-
ment to visualize vascular structures. The CT resolution was
0.6 mm isotropic. The US images were provided by a BK
Panther Laparoscopic Ultrasound system. The laparoscopic
probe was equipped with an electromagnetic tracker (Micro-
BIRD, Ascension Technology Corp., Burlington, VT), and
was connected to the computer through a PCI board. The
sensor attached to the endoscope tip was 1.8 mm in diam-
eter and 8.4 mm in length. Data from the US system and
the tracking system were recorded using our navigation sys-
tem for two targeted structures: the celiac-aorta branch with
Doppler enabled and the right kidney. The acquisitions were
done using the nominal system operation after an initial rigid
body registration. The goal was to successfully recover the
displacement using LEPART retrospectively.

The results for the celiac-aorta branch are shown in Fig.
11. Figure 11a depicts the clear displacement in the z-direc-

tion with respect to the US probe. While the branch is imaged
in the US, as it is reflected in the Doppler signal shown in Fig.
11b, the reformatted CT provided by the system, shown in
Fig. 11c, does not align with the underlying US. The results
after applying LEPART is shown in Fig. 11d. The displace-
ment recovered by LEPART was (−0.6,−7.5, 2.7) mm de-
fined with respect to the local US frame. We can see how the
method is able to recover the z-displacement until the branch
point is clearly visible while it was missing using standard
tracked US, as depicted in Fig. 11a. Being able to recover
z-displacements is critical given that in plane misregistration
can be easily identified by the tracked US system operator.

The registration result for the kidney case is shown in
Fig. 12. The displacement computed by LEPART was (−9.6,

−16.8,−4.5) mm. Both an out-of-plane and in-plane dis-
placement is recovered to yield a good alignment of the out-
ermost surface of the kidney, as well as the internal capsule.
The registration worked reasonably well given the amount of
edge content present in the presented cases. The edge maps
generated by the PSC step described in Sect. 5, that are used
as inputs for LEPART, are shown in Fig. 13. LEPART is able
to recover the discrepancy between the images even though
some edges are either spurious or partially missing in the US
source.

Discussion

The presented registration framework has been developed
to be used with abdominal laparoscopic and endoscopic
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Fig. 11 Registration in an
animal model: celiac-aorta
branch. a 3D view of the tracked
probe with respect to the
anatomy extracted from CT
before applying the proposed
registration method.
b Ultrasound image of the
celiac-aorta branch
corresponding to the 3D view
shown in (a). Fusion of the CT
and US before (c) and after (d)
registration. The branch point is
successfully recovered in the
reformatted CT view after
registration

Fig. 12 Registration in an
animal model: right kidney.
a Sequence of the CT volume
reformatted in the local frame
given by the US probe
coordinate system. b The CT
slice corresponding to the US
plane before (A) and after (B)
registration are highlighted.
Fusion of the CT and US before
(c) and after (d) registration.
The kidney surface observable
in the US is accurately aligned
with the surface defined by CT

ultrasound images without relying on matching specific
geometric characteristics. Instead, it uses edge information
between tissues with different acoustic properties and CT
densities to perform PC. In this sense, our approach is not
organ specific. However, the edge features must be present
in both the US and CT images. This is not always the case,
due to the aberrations and distortions usually encountered in
US imaging, for example shadowing. In our experience, the
kidneys and the vascular structures in the abdomen present

enough contrast and edge information to guide the registra-
tion process. As long as minimal conditions are met for the
amount of structural content both in the US and the CT im-
ages, the algorithm is not organ-specific per se.

Edge information has been used as the main intermediate
modality to achieve PSC and be able to deal with the mul-
timodality nature of the problem. However, other approaches
to PSC are possible and recent works on simulation of US
images from [10,19] have shown encouraging results. In turn,
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Fig. 13 Edge images used by
LEPART as input data to
generate the registration results.
a and b depicts the edge images
from US (gUS) and CT (gCT)
,respectively, for the celiac-aorta
branch case. c and d shows the
same edge maps for the kidney
case. For the CT edge images,
only one slice is shown
corresponding to the optimal
slice resolved by the registration
algorithm

the simulated US is used in conjunction with the acquired US
to perform the registration. It is our interest to explore how
LEPART performs when using the simulated US as its input.
We expect to exploit the phase information contained in tis-
sues with well-defined speckled characteristics that we are
not currently benefiting from.

Our results show that the registration is achieved within
a few seconds on a conventional laptop PC. A specialized
implementation using advanced computing techniques that
leverage the Graphics Processing Unit (GPU) is expected to
achieve at least 10 frame per seconds registration update,
which should suffice for clinical use. This target frame rate
is based on the fact that the underlying core operation of
the presented approach is the FFT. It has been shown that
the FFT can be optimally implemented on a GPU [6]. Such
implementations are currently commercially available in
CUDA, the parallel computing architecture developed by
NVIDIA.

Our current method poses several limitations that have
to be considered. LEPART is only capable of recovering
small translations of more or less rigid structures, which
may limit its utility to reduced field of view imaging vol-
umes. Larger displacements and other types of deformations
might be accommodated by applying a fit of the deforma-
tion model over a temporal window. Another major limita-
tion is related to the fact that enough structural information
has to be present in the US images to achieve a successful
registration. During a regular intervention, some US frames
lack any information at all, mostly due to shadowing or poor
acoustic coupling. Those frames ideally should not be con-
sidered in the registration process. An automatic method to
perform frame selection would be desired before LEPART,
or even any other registration method, is applied. We are

currently exploring different alternatives based on the infor-
mation content provided by the US image. Lastly, the current
study only presents a phantom validation that may reveal lim-
ited information about the registration accuracy of LEPART
in a clinical situation, future research lines will include an in-
vivo validation of LEPART. The clinical registration exam-
ples were based on a porcine animal model. Further research
is needed to assess the performance of LEPART in human
studies.

The systems which may clinically use LEPART are com-
paratively low in cost. They consist of a personal computer
workstation with parallel graphics capability, a flat panel
display, and an electromagnetic tracker system. At current
commercial prices, this system can be implemented in an
endoscopy or laparoscopy suite for less than $15,000. In
addition, the system requires very little training; as shown
in prior work [15,16]; new users use it effectively with little
orientation and no training.

Conclusions

In this paper, we have presented a multimodality registra-
tion method for preoperative CT images and intraoperative
US endoscopic images to guide endoscopic interventions.
Unlike traditional registration methods, the registration par-
adigm presented in this paper is unique in that:

– The registration technique can potentially work in a real-
time mode producing continuous updates of the changes
between the preoperative image and the US image.
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– The registration technique is local to the location of the
US frame. The locality of the image source allow us to
use the assumption of quasi-translational misalignments.

LEPART appears to be a fast and robust technique for near
real-time multimodality registration (under 5 s) of 2D to 3D
data sets. For the cases studied, the LEPART approach gives
significantly smaller registration error (Table 2) in compari-
son to traditional PC techniques.
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