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Abstract— Automatic aorta segmentation in thoracic
computed tomography (CT) scans is important for aortic
calcification quantification and to guide the segmentation
of other central vessels. We propose an aorta segmentation
algorithm consisting of an initial boundary detection step
followed by 3D level set segmentation for refinement. Our
algorithm exploits aortic cross-sectional circularity: we first
detect aorta boundaries with a circular Hough transform
on axial slices to detect ascending and descending aorta
regions, and we apply the Hough transform on oblique
slices to detect the aortic arch. The centers and radii of
circles detected by Hough transform are fitted to smooth
cubic spline functions using least-squares fitting. From
these center and radius spline functions, we reconstruct
an initial aorta surface using the Frenet frame. This
reconstructed tubular surface is further refined with 3D
level set evolutions. The level set framework we employ
optimizes a functional that depends on both edge strength
and smoothness terms and evolves the surface to the
position of nearby edge location corresponding to the aorta
wall. After aorta segmentation, we first detect the aortic
calcifications with thresholding applied to the segmented
aorta region. We then filter out the false positive regions
due to nearby high intensity structures. We tested the
algorithm on 45 CT scans and obtained a closest point
mean error of 0.52 ± 0.10 mm between the manually
and automatically segmented surfaces. The true positive
detection rate of calcification algorithm was 0.96 over all
CT scans.

I. INTRODUCTION

Automatic aorta segmentation in thoracic computed
tomography (CT) scans is important for the assess-
ment of cardiovascular risk factors based on aortic
calcification quantification. Radiotheraphy planning is
another application for which automated segmentation
of mediastinum structures including aorta is important.
The aorta is a major vessel in the mediastinum and can
be used as a landmark to guide segmentation of other
mediastinum structures such as esophagus [1], heart,
and other major vessels such as pulmonary veins and
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arteries [6]. Measurements of volume and cross sectional
areas of these vessels can be a potentially important
biomarkers to understand cardiovascular and pulmonary
diseases as well as interdependencies of these diseases.

In non-contrast CT, aorta segmentation is not trivial,
since at some locations, there is no clear boundary be-
tween aorta and surrounding mediastinum structures that
has similar intensity ranges. To address this difficulty,
most algorithms developed for non-contrast CT ([3],
[4], [7], [6]) use model based approaches and need a

priori models built from manually segmented training
data. However, these approaches might fail since they
have limited flexibility to capture variabilities. Instead of
building models from training set, we construct an initial
model from the current data. To construct a good initial
model of aorta boundary in 3D, we adapt some ideas
from [3] and [4]. We use sequential hough transform
based circle detection followed by least squares spline
fitting to obtain the aorta centerline and radius functions
in 3D. From the centerline and radius functions, we
reconstruct an initial tubular aorta surface using the
Frenet frame [9], [8].

After this initialization step, we use a different ap-
proach from previous work for the refinement of the
aorta segmentation. In [3], [4], the initial centerline
is refined by fitting it to the likelihood image from
the distance transform. Aorta surface is then recon-
structed with the inverse distance transform. Instead
of refining the centerline position, in this work, we
refine the initial aorta surface position. We evolve the
initial boundary surface to the location of edges. This
evolution is performed in 3D with a level set algorithm
based on standard gradient and smoothness terms and
a distance regularization term [10], [11], [5] to restore
the regularity of evolving level set function. For some re-
gions, where edges are partially missing, 3D smoothness
constraint stops leakage locally. This approach works
very well for fine-tuning given a good initialization of
the boundary surface.

The main contributions of this work are two-fold:
first, we propose a fully automated and unsupervised
3D aorta segmentation algorithm which is an extension
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of previous work. Second, using the segmented aorta as
the region of interest, we detect aortic calcification. To
do so, we first apply thresholding to the region inside
the aorta wall and then perform 3D region growing to
discard small regions detected due to noise. True cal-
cifications are then separated from nearby high density
regions, false positives, with a filtering approach based
on anatomical position of detected candidate calcifica-
tion region with respect to nearby high density structure.
False positives are often regions of vertebra close to de-
scending aorta, or regions of aortic arch close to tracheal
calcifications. Some examples of these regions were
reported in [2], where an atlas based approach is used
for aorta segmentation. Since the atlas based approach
is not very accurate, some false positive calcifications
are detected in different locations. True calcifications are
then selected with a classification approach.

We tested our aorta segmentation and calcification
detection algorithm on 45 CT scans acquired from a
cohort of smokers with a range of expiratory airflow
obstruction. The results are reported in comparison to
manual expert labellings.

II. METHODS

A. Preprocessing

In order to reduce the search region and reduce
computational costs, we first crop a smaller volume of
interest (VOI). To determine the VOI boundaries, we
segment the lungs and trachea only to use them as
anatomical landmarks [3].

For trachea and lung segmentation, the first step is
obtaining seed points for the region growing algorithms.
To get those seed points, we detect the lungs and trachea
in the convex hull of the lungs in a slice (the upper
third slice of the volume) with thresholding followed by
connected components labelling in 2D. The trachea is
selected as the largest component within the lung convex
hull. The center of the detected trachea is used as a seed
point for a 3D region growing algorithm to segment the
trachea in a small VOI around that seed point. This VOI
is initially set small (60× 40mm) in anterior-posterior
and mediolateral directions to speed up the 3D region
growing. The initial VOI is enlarged iteratively until
the detected trachea region includes the trachea carina.
Similarly the left and right lungs are segmented with 3D
region growing applied on down-sampled and cropped
volume given the seed location obtained from the initial
slice. The lung bounding box is then calculated as in [3].

B. Initial Boundary Surface Construction

Our approach exploits the almost circular cross sec-
tions of descending (DA) and ascending aorta (AA)

in axial slices and the half torus shape of aortic arch.
Previous work [4] also utilize this information to de-
tect these circles using circular Hough transform. We
adapt the method described in Feuerstein et. al [3]. We
sequentially detect circles in axial slices starting from
the slice of trachea carina (TC) and moving in the
inferior direction. For the aortic arch, we first reconstruct
oblique slices along the half torus shape of the aortic
arch and detect circles in those oblique slices. In contrast
to previous approach, we detect circles in finely sampled
slices (every other slice). The reason is that when a circle
is not detected in one slice, it may be detected in the
next, and the missing slice can be filled in later during
spline fitting step.

We start the circle detection process from the axial
slice of the TC. Circular Hough transform is applied in
this slice to locate the AA and DA. To select the circles
corresponding to DA and AA, we first filter detected
circles according to their relative positions with respect
to TC. Next we select from the remaining candidate
circles (Ci), the one that maximize an energy function:

R(Ci) = Rint(Ci)+RHT (Ci) (1)

where Rint is the intensity term, calculated as the ratio
of the number of pixels inside the circle that are within
the aorta intensity range (in HU) to the total number of
pixels inside the circle and RHT is the Hough Transform
value term which is equal to the value of that circle in
the Hough map indicating the strength of that circle.

For AA, we use two criteria to eliminate incorrect
circles. Circles with a radius smaller than rthresh are
eliminated. Also, the circles which are to the posterior or
to the right of TC are eliminated. From the remaining
candidate AA circles the one that maximizes R(Ci) is
selected as AA. The circle that corresponds to DA is
found similarly using the same energy function after
eliminating the circles that are inferior to the carina.

To detect aortic arch, we follow the approach in [4].
We reconstruct oblique slices with three degree steps
along the half torus shape of the aortic arch. In each
oblique slice we sequentially detect circles that maxi-
mizes the same energy function and that are within ∆r

radius and ∆d distance to the one obtained from the
previous slice.

After detecting the circular cross sections of the aortic
arch in oblique slices, we detect the DA and AA in
axial slices, starting from the slice of TC and moving
in inferior direction, using a similar sequential approach.
AA circle detection stops when no AA circle is detected
in five consecutive slices, which corresponds to the
inferior endpoint of AA. DA is detected using the similar
sequential detection approach.
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Due to partial or complete lack of edges of aorta,
circles cannot be detected in some slices. We skip those
slices and continue, unless no circle is detected in five
consecutive slices. We recover these missing circles in
the next step. We applied a least squares spline fitting
in 3D to the center and radii function of the detected
circles. Given these centerline and radius functions, a 3D
tubular aorta surface is constructed using a Frenet frame
making the tube minimally twisted [8], [9]. This surface
is the initial boundary surface of the aortic wall, which
will be fine-tuned by 3D evolution in the following step.

C. Segmentation Refinement using 3D Level Sets

After the initial model is constructed, a 3D level set
segmentation is performed to evolve the initial boundary
surface to the nearby edge locations while keeping the
shape smooth in 3D. In level set approaches, contours
are represented implicitly as the (zero) level line of
some embedding level set function (Φ). An energy
function including image based information such as
image intensity and gradient (edges) as well as internal
regularization constraints are designed and minimized
for 3D segmentation within a variational optimization
framework. The initial surface is evolved so as to
minimize the energy function.

We use the level set energy function (E in Eqn. 2)
including standard energy terms: edge matching Eedge,
level set regularization Ereg [5] and smoothness (length)
Esm terms [11].

E(Φ) = Eedge(Φ)+λEreg(Φ)+νEsm(Φ)
=

∫
Ω g(I)δε(Φ)|∇Φ|dΩ+λ

∫
Ω

1
2 (|∇Φ|−1)2dΩ

+ν
∫

Ω δε(Φ)|∇Φ|dΩ (2)
Here δ (.) is the Dirac function of Φ and g(.) is the edge

indicator function in [5] and I is the CT volume. The
initial level set function representing the aorta boundary
is updated at each step t to minimize E according to
following update equation:

d
dt Φ = δε(Φ) div(g(I) ∇Φ

|∇Φ| )+λ [∆Φ− div( ∇Φ
|∇Φ| )]

+νδε(Φ) div( ∇Φ
|∇Φ| )

(3)
Zero level set of the final Φ gives us the aorta wall.

D. Detection of Aortic Calcifications

After aorta segmentation, we detect the aortic calci-
fications by first applying a threshold (130 HU [2]) to
segmented aorta volume. Although the mean error of the
automated aorta segmentation is quite small, we dilate
the boundary of segmented aorta by 2 voxels to make
sure that the true boundary of aorta is included in the
segmented region. In order to remove the false positive

calcification regions that are due to nearby high density
regions we use an additional selection process. The most
frequent false positive regions are those where DA is
close to the vertebra and where the aortic arch is close to
the tracheal calcifications (See Fig. 1). For the vertebra,
we use a region growing algorithm in 2D to determine
if the candidate calcified regions are growing towards
vertebra and eliminate the ones whose areas grow too
large towards vertebra direction. For the trachea, we
eliminate candidate 3D connected component whose
pixels are located around the trachea boundary.

Fig. 1. Examples of regions that are true calcifications (b and d) and
false positives (a and c) after thresholding step. The algorithm further
processes these regions and rejects the false positives.

III. RESULTS

We report experiments using thoracic CT scans (with
in plane resolution between 0.53 to 0.94 mm and slice
thickness between 0.50 and 0.70 mm ) from 45 subjects
obtained from 16 different institutions with different
scanners and similar acquisition protocol. We report the
results in comparison to the manually segmented aorta
in all data sets. The algorithm parameters are set to be
3 for ∆r, and 5mm for ∆d, 8.5 mm for rthresh, 0.04 for
λ and 0.2 for ν .

We use the following point-wise distance metric to
evaluate the results of the aorta segmentation algorithm.
The minimum euclidean distance between the points
on the surface segmented by the algorithm and the
points on the surface labelled manually are computed.
We obtained a point-wise mean error of 0.52 ± 0.10
mm over all data sets for the entire aorta including
aortic arch, AA and DA. We obtained a mean error
of 0.51± 0.33 mm over DA and 0.64± 0.16 mm over
AA. We also calculated other measures of performance
including mean dice coefficient (0.93±0.01) and mean
jaccard coefficient (0.86±0.02) over all CT scans. Fig. 2
shows the mean value of these measures over each data
set. The 3D isosurface plot of the segmented aorta is
shown in Fig. 3 for two sample CT scans. The colormap
indicates the point-wise error between aorta surfaces
segmented manually and automatically.

We evaluate the calcification detection performance
of the algorithm in comparison to the manually detected
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Fig. 2. Mean ± std of error (top figure), Jaccard coefficient (middle
figure) and Dice coefficient (bottom figure) for each data set

Fig. 3. Segmented aorta in 3D for two sample CT scans. Colormap
indicates the closest point euclidean distance (in mm) between au-
tomatically segmented and manually labelled aorta surfaces (Better
viewed in color)

calcifications (Fig. 4). We first apply 3D connected
component analysis to automatically detected aortic cal-
cifications. We compute false positive (FP), and true
positive (TP) rates for number and volumes of calcifica-
tions detected in 45 CT scans. Out of the 424 calcified
regions marked by the expert, the algorithm successfully
detected 96% correctly (TP) which is better than 84%
rate reported in [2]. The ratio of the successfully detected
calcification volume to the volume marked by the expert
is 0.94. The ratio of the number of FP calcifications to
the number of algorithm detected calcifications is 0.17
and this ratio is 0.09 for the volume of FP calcifications.

IV. CONCLUSIONS

We use circularity of aorta cross section to find an
initial aorta surface which is further evolved to the

Fig. 4. Calcifications detected manually and by the algorithm are
shown with yellow and blue respectively. (Better viewed in color)

nearby edge location with a 3D level set approach.
After aorta segmentation, calcifications are detected by
thresholding. Some frequent locations of false positive
calcifications are further processed and either automati-
cally selected or rejected according to their anatomical
locations. Some of our segmentation errors are due to
limitations of the accuracy of manual expert labellings
over axial slices especially around aortic arch. Future
work will involve further testing and validation of the
algorithm on a large cohort of CT scans to understand
the effects of calcification on cardiovascular and pul-
monary diseases. Also aorta segmentation will be used
to guide the segmentation of other major vessels.
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