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Abstract

The main contribution of this work is a framework to
register anatomical structures characterized as a point set
where each point has an associated symmetric matrix.
These matrices can represent problem-dependent charac-
teristics of the registered structure. For example, in airways,
matrices can represent the orientation and thickness of the
structure. Our framework relies on a dense tensor field rep-
resentation which we implement sparsely as a kernel mix-
ture of tensor fields. We equip the space of tensor fields with
a norm that serves as a similarity measure. To calculate the
optimal transformation between two structures we minimize
this measure using an analytical gradient for the similarity
measure and the deformation field, which we restrict to be
a diffeomorphism. We illustrate the value of our tensor field
model by comparing our results with scalar and vector field
based models. Finally, we evaluate our registration algo-
rithm on synthetic data sets and validate our approach on
manually annotated airway trees.

1. Introduction
Point-set based representations arise in a wide variety of

medical imaging applications. Examples include the extrac-
tion of structures like blood vessels and airways [1, 2]. The
ability to register two different point-sets representing the
same anatomical structure is critical to enable population-
based studies. It is also important for tracking longitudinal
characteristics of the structure of interest. Non-rigid point-
set registration algorithms exist (e.g. [3, 4]); however, these
algorithms represent structures as a collection of points in
R3 neglecting valuable information regarding the shape of
the structure. This representation was recently improved by
the currents model [5, 6] enriching the information of each
point with a vector. Currents has proved to be a extremely
useful in registration situations that involve orientable sur-
faces, where the vector is the surface normal; and curves,
where it is the tangent to the line. Despite these successes,
the Currents model has shortcomings in cases where a vec-
tor space is not powerful enough to represent the shape in-

formation of the structure of interest. An example of this are
airways, in which it is desirable to represent the direction of
the structure at a point as well as its thickness.

The main contribution of this work is a framework to
perform registration of anatomical structures characterized
as a point set where each point has an associated symmetric
matrix. These matrices may represent problem-dependent
characteristics of the registered structure. Examples of
these are airways in which the matrices represent the orien-
tation and thickness of the near-tubular structure The pro-
posed registration framework relies on a dense tensor field
representation, which we represent sparsely as a kernel mix-
ture of tensor fields. We equip the tensor space with a norm
that provides a similarity measure. By optimizing this mea-
sure, or matching criterion, we calculate the optimal trans-
formation between two structures.

Borrowing tools from differential geometry and matrix
calculus we derive an analytical gradient for the matching
criterion and thus, the velocity field. Using our closed-form
gradient and the transform field representation of one pa-
rameter subgroups of diffeomorphisms [7, 8], the resulting
registration algorithm yields a diffeomorphic transform. To
illustrate the value of the tensor representation, we compare
our results with the scalar-based [4] and vector based [6]
representation methods. We evaluate our registration al-
gorithm on synthetic data sets and illustrate the utility of
our approach on manually annotated airway trees. All
algorithms presented in this paper can be downloaded at
http://github.com/demianw/pyMedImReg-public

2. Methods

2.1. Feature Field Representation and Distance

Let us represent an anatomical structure as a point set
where each point is endowed with a feature. We will
call these enriched points particles, and represent a set as
P = {(pi,Fi)} where pi ∈ Ω is the spatial location of the
particle and Fi is a feature representing characteristics like
direction or volume. If the features belong to a space F ad-
mitting linear combination, we can represent P as a feature
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field w: Ω"→F

w(x) =
∑

i

k(x,pi)Fi (1)

where K : Ω × Ω "→R is a kernel function. Moreover, if
F is equipped with an inner product ⟨·, ·⟩F , this induces an
inner product operation between feature fields:

⟨w1, w2⟩W =

∫

Ω
⟨w1(x), w2(x)⟩Fdx

=

∫

Ω

∑

ij

⟨k(x,p1
i )F

1
i , k(x,p

2
j )F

2
j ⟩Fdx

=
∑

ij

K(p1
i ,p

2
j )⟨F1

i ,F
2
j ⟩F ,

with K(x,y) =

∫

Ω
k(η,x)k(η,y)dη.

(2)

This inner product operation in eq. (2) induces a distance
between objects in the feature field space,

∥w1 − w2∥2W = ∥w1∥2W + ∥w2∥2W − 2⟨w1, w2⟩W ,

∥w∥2W = ⟨w,w⟩W
(3)

This distance measures the similarity between the two fea-
ture fields globally, without assuming point correspondence
between the anatomical structures.

Particular cases of this are the Gaussian mixture model
(GMM) and the discrete setting of the currents model [4, 5].
In GMM, the features F are a scalar, usually 1, while in
currents they are 3D vectors and ⟨·, ·⟩F is the inner prod-
uct in R3. In both cases, the kernel K is a Gaussian func-
tion. In this work, we extend this representation to include
the feature space of symmetric positive semidefinite (SPS)
matrices, then w(x) becomes a tensor field. This feature
representation is powerful enough to consider directionality
information of each particle as well as orientation and vol-
umetric information. Let us define the feature space F ⊂
Sym3

≥0 with the inner product ⟨F,G⟩F = trace(FGT )
which is the Frobenius inner product. These tensors have
a graphical representation as ellipsoids where the axes are
aligned with the eigenvectors and have the length of the
eigenvalues. Our choice of inner product measures the sim-
ilarity between two symmetric matrices taking in account
volume, calculated as the determinant, and angle. It en-
ables us to use the rich field of matrix calculus to derive our
registration algorithm. We show examples of these repre-
sentations in fig. 1 where we illustrate how the tensor field
represents orientation, inter-point distance and width while
the vector field or currents approach represents inter-point
distance and direction only. Our choice of inner product
measures the similarity between two symmetric matrices
taking in account determinant and angle. It enables us to

use the rich field of matrix calculus to derive our registra-
tion algorithm. We show examples of these representations
in fig. 1 where we illustrate how the tensor field represents
orientation, inter-point distance and width while the vector
field, or currents, model represents only inter-point distance
and direction.

2.2. Tensor Field Deformation
To implement a registration algorithm, we need to be

able to transform tensor fields by a smooth map. Let
φ : R3 "→R3 be a smooth map, transforming w(x) by φ
can be formulated through a pullback operation φ∗:

φ∗w = w(φ(x)) =
∑

i

k(φ(x),pi)
(
φ−1

)∗
Fi. (4)

In the case where we apply the map φ only to discrete points
pi, then

φ∗w = w(φ(x)) =
∑

i

k(x,ψ(pi))ψ
∗Fi (5)

where ψ is φ−1 with respect to the kernel function K and
ψ∗Fi is the action of ψ on Fi. In the case that the feature Fi

is a vector f ∈ R3, the action ψ on f is defined as Dpi
ψT f ,

with Dpi
ψ the Jacobian of ψ(x) at pi [9]. However, in our

case Fi are symmetric positive semidefinite (SPS) matrices
F. Then, we derive the action ψ by decomposing the SPS
matrix as F =

∑3
j=1 f j [f j ]

T , and applying the vector ac-
tion

ψ∗F =
∑

j=1...3

(DT
pi
ψf j)(D

T
pi
ψf j)

T = DT
pi
ψFDpi

ψ. (6)

In this work, we picked, in agreement with [5], k(x,y) =
r(∥x− y∥2) with r a radial kernel.

2.3. Tensor Field Registration
Having a representative space for our anatomical struc-

tures, we now derive a registration algorithm. Given two
feature fields w1 and w2, we look for the transform φ mini-
mizing:

E(φ) = ∥w1 − φ∗w2∥2W +Reg(φ) (7)

where the first term of E(φ), or data attachment term, quan-
tifies the similarity between the feature fields and the second
one is a regularization term on the transform.

To minimize eq. (7) we use a gradient-based algorithm.
Hence, assuming that φ(x) = φ(x; θ1, . . . , θM ) is a para-
metric transform, we need to obtain the gradient of E(φ)
with respect to each parameter. As we show in appendix A,
using properties of the inner product space of tensor fields
we obtain the gradient of the data attachment term with re-
spect to the transform parameter θ:

∂θ∥φ∗w2 − w1∥2W = 2 (⟨φ∗w2,∂θφ
∗w2⟩W − ⟨w1,∂θφ

∗w2⟩W )
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(a) Lung Particles (b) GMM Representation

Vector Feature

(c) Current Representation

Tensor Feature

(d) Tensor Field Representation

Figure 1: Comparison of airway tree models. As shown in figs b and c, lower zoom in box, the tensor field represents changes in the
bronchi thickness while the currents approach does not.

In the case that our features are tensors, we use eq. (5) and
matrix calculus properties (see appendix A) to derive

∂θφ
∗w2=

∑

i

(
∇k(x, ψ(pi))∂θ

Tψ(pi)

)
JT
i FiJi

+
∑

i

k(x, ψ(pi))
((
∂θJ

T
i

)
FiJi + JT

i Fi (∂θJi)
)
,

(8)

with Ji = Dpi
ψ, ψ = φ−1.

Diffeomorphic deformation case: If we restrict φ to
be a diffeomorphism parameterized by a stationary veloc-
ity field [7, 8] we can define a velocity field u : R3 "→R3,
and characterize the deformation by the differential equa-
tion dφ/dt = u(φ(t)) subject to φ(0) = Id and t ∈ [0, 1].
To generate the transform φ, we start with φ(0) = Id, and
integrate it over unit time to obtain φ = φ(1). We imple-
ment this integration by discretizing the unit time interval
into R equal size steps:

φ(1/R)(x) = x+ u(x)
R , φ((i+1)/R) = φ(1/R)◦φ(i/R) (9)

with i = 2 . . . R. Larger values of R yield a more ac-
curate approximation to φ. From eq. (9) we deduce that
the deformation field approximation is uniquely determined
by the velocity field u and the number of steps R. If we
take a parametrical representation of u, with parameters
Θ = {θi}, the derivative of φ with respect to a parameter θ
is:

∂θφ
(1/R)(x)=∂θ

u(x)
R ,

∂θφ
((i+1)/R)=

(
∂θφ

(1/R)
)
◦φ(i/R) +∂θφ

(i/R)Dxφ
(1/R)

As our particle-sets are not bound to a specific grid, we
represent the velocity field sparsely, through the interpolat-
ing function u(x) =

∑
j exp(−∥pi−x∥2/σ2)αi, where σ

controls its smoothness and the parameters of the transform
are Θ = {αi,pi ∈ R3}i≤N . This representation has advan-
tages of being implementable by mixture of finite support
functions and an easy calculation of its derivatives with re-
spect to the parameters Θ and position x. It is worth noting
that our tensor field approach is independent of the particu-
lar choice of transform provided that it is a diffeomorphism.
How to model and parameterize such transforms is a wide
area [10] which we do not address in this work as it is cen-
tered on the choice of metric between anatomical structures.

Regarding regularization on eq. (7), as we are using a
stationary velocity field, we chose a space-only regularizer
Reg(φ) =

∫
∥Lu(x)∥2dx with the linear difference oper-

ator L = ∆ which ensures the smoothness of the velocity
field.

Finally, having described in detail the terms of eq. (7)
and the gradient of the data attachment term, we minimize
eq. (7) through a quasi-newton approach, the L-BFGS-B
method [11]. This gradient-based optimization method uses
an approximation of the inverse Hessian of E(φ) to speed
up convergence while keeping the memory requirements
fixed during the optimization process.

2.4. Airway datasets

In the case of our airway datasets, we sample the air-
way centerline with scale space particles [2]. The particles
are equally distributed along the centerline of the airways
at a distance s and have an ellipsoidal shape derived from
the Hessian matrix at the scale-space location of the airway
point. From this particles, define the tensor field:

w(x) :=
∑

i

exp
(
−(x− pi)

2/σ2
)
Fi, w : R3 "→ Sym3

≥0

(10)

272527312731



Scaling → Registered

→

Translation & Rotation → Registered

→

Figure 2: Registration of tensor fields under synthetic de-
formations using the algorithm in section 2.3. The metric
∥ · ∥W effectively registers tensor fields under affine trans-
forms.

where one eigenvalue of Fi is set to the inter-particle dis-
tance s/2 with its eigenvector aligned with the extracted air-
way direction, and the other two have the lumen size at pi

as their magnitude. In the limiting where the ellipsoids are
infinitely thin (s→0) they become discs modeling the tubu-
lar structure of the airways.

3. Experiments
Synthetic Experiments Our first synthetic experiment is to
show the efficacy of the Frobenius norm to register tensor
fields. We generated two synthetic linear transformations
and registered them back using the algorithm in section 2.3,
only here we take the linear transform φ(x) = Ax+ t and
no regularization term. We show the results of this experi-
ment in fig. 2 where the red tensor field is being registered
onto the green one.

On a second synthetic experiment we tested the efficacy
of the deformable registration algorithm and compared the
results of using a tensor field against the currents and GMM
models. The deformation field parameterization and opti-
mization was kept equal for all approaches in order to test
the performance of the choice of representation. To obtain
a dataset with a gold standard we produced 100 random de-
formations of an airway dataset. The initial dataset is in-
scribed in a box of 190 × 125 × 250mm. We generated
smooth random deformations by producing Gaussian ran-

Gen 1 2 3 4 5
Position Overlap with Manual Labeling

Tens 91%± 2 90%± 6 73%± 5 62%± 3 61%± 3
Cur 90%± 2 91%± 7 73%± 2 61%± 3 63%± 3

Volume Overlap with Manual Labeling
Tens 87%± 5 75%± 3 72%± 5 62%± 4 60%± 5
Cur 42%± 8 33%± 10 38%± 7 31%± 9 28%± 15

Table 1: Comparison of the Tensor and Current methods in
with manually labeled datasets. The performance regarding
overlap of labelled regions is comparable between the Ten-
sors and Currents methods. Regarding the volume of the
particles our methods outperforms Currents.

dom vector fields with standard deviation γ taking values of
0.1; 1.0; and 10.0mm and convolving them with a Gaussian
kernel. Then, we applied each transformation to an airway
image transforming the points and the particle shapes ac-
cording to section 2.2. Finally, we registered each set to
the original template and quantified the registration error by
taking the mean squared error (MSE) of the position of each
registered particle and the original position in the template;
its original volume; and the angle with respect to its original
direction. In fig. 3 we show: on the left panel ten realiza-
tions of randomly deformed airways; center: the original
template in white, a deformed case in green and its result-
ing registration to the template in red; right: the quantitative
results for our registration comparison. Our method proved
to perform better then GMM and currents: our results show
to have a lower MSE in terms of the distance to the origi-
nal point than the GMM and the current approaches for all
noise levels.
Human Data Airway Experiments We analyzed 20 vol-
umetric chest CT datasets acquired at full inspiration. The
scans were performed either with GE scanner and Siemens
scanners. In-plane pixel spacing ranged from 0.54mm to
0.85mm across all scans. The CT were down-sampled with
a x4 ratio and the airway tree extracted using scale-space
particles [2]. We registered all datasets affinely and then de-
formably. We show the results of this process in fig. 4 where
we gave a different colored to each subject. Were the high
level of agreement can be noticed. To validate our results,
an expert labeled the airways generations from 1 to 5 (1 be-
ing the trachea and 5 the smaller bronchi) [12]. Then, we
quantified the classification agreement of the overlapping
particles, on a per-generation basis, we show these results
in table 1.

We show the results of our registration algorithm in the
top right image of fig. 4. Our proposed method provides
a sound mathematical framework to incorporate different
information types in anatomical structure registration such
as thickness or volume of the structure at every point.
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Figure 3: Synthetic airways. Left: ten realizations of random airways with deformation noise γ = 10. Center: we register the green
airway tree onto the white one. The result is shown in red and the deformation field as arrows. The registration quality is such that the
red is hard to tell from the white. Right: quantitative comparison of on the synthetic registration of 300 cases. It is noticeable that our
method has a lower mean distance and volume difference with the original position than GMM and currents; while retaining a comparable
performance in terms of angle

4. Conclusion
In this work we present a method for registering anatom-

ical structures represented as point-sets endowed with a
shape feature represented these structures as tensor fields.
Our method computes a diffeomorphic transform between
pairs of particle sets through a minimization process using
an analytical gradient.

At first sight, this work is similar to registration work in
diffusion tensor imaging (DTI) [13, 14, 15]. However, 3
main issues distinguish our application field and approach
from DTI: 1) DTI tensors are Symmetric Positive Definite
(SPD) while we are concerned with SPS ones. The SPD
constraint requires DTI algorithms to keep tensors on the
boundary of the SPS set. Hence the metric and transfor-
mation is different to ours; 2) The DTI deformation is dif-
ferent than ours: Most DTI deformable registration tech-
niques transform each tensor through functions of rotations,
i.e. without changing their eigenvalues. A main reason
for this is the lack of knowledge on tissue microstructure
changes (e.g. myelin density) driving eigenvalue changes
across subjects; 3) We deal with a sparse set in space while
DTI deals with an evenly sampled grid. The equivalence

between these two problems is not simple. To convert the
grid to a sparse sample we would need techniques like com-
pressed sensing, the converse would require to pick a grid
resolution and sample the continuous representation of the
sparse set. All in all, both application domains deal with
tensor fields, however they are far from equivalent in math-
ematical formalism and application domain.

Finally, we tested our algorithm in airway trees, syn-
thetic and human. Our method outperformed the GMM and
currents approaches. We also showed the performance of
our method in the case of inter-subject registration. We val-
idated these results using expert annotated airway datasets
and comparing the overlap of the annotated regions after
registration. Our results show an average overlap of higher
than 70%.
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Figure 4: Human data. Left: Airway tree with four generations colored: 1: Red; 2: Yellow; 3: Green; 4: Cyan; 5: Blue.
Center: Airways of 10 different subjects affinely registered. Right: The same airways registered with our deformable tensor
field approach

A. Gradient of the Data Attachment Term
In this appendix we show the analytic gradient of the

data attachment, eq. (7), term with respect to the transform
parameter θ

∂θd
2(w1, φ

∗
θw2)=∂θ∥φ∗θw2 − w1∥2W (11a)

=

∫
∂θ∥φ∗θw2 − w1∥2Fdx

due to the cosine rule in F :

= ∂θ

∫
∥w1∥2F + ∥φ∗θw2∥2F − ⟨φ∗θw2, w1⟩F dx (11b)

deriving w.r.t. θ:

=

∫
2⟨φ∗θw2,∂θφ

∗
θw2⟩F − ⟨w1,∂θφ

∗
θw2⟩F dx (11c)

using eq. (2):
= 2 ⟨φ∗θw2, ∂θφ

∗
θw2⟩W − 2 ⟨w1, ∂θφ

∗
θw2⟩W (11d)

where eq. (11c) depends on the existence of the chain and
product rules for derivation in F . When F is the space of
square matrices with ⟨F,G⟩F = trace(FGT ). Then, it can
be shown that ∂F⟨F,G⟩F = G and that if γ : F "→ R, then
∂Fγ(F) = ⟨γ′(F),F⟩F [16]. These two properties are the
ones allowing use to derive eq. (5) obtaining the tensor field
derivative eq. (8)
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