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ABSTRACT

We present a novel airway labeling algorithm based on a Hid-
den Markov Tree Model (HMTM). We obtain a collection of
discrete points along the segmented airway tree using parti-
cles sampling [1] and establish topology using Kruskal’s min-
imum spanning tree algorithm. Following this, our HMTM
algorithm probabilistically assigns labels to each point. While
alternative methods label airway branches out to the segmen-
tal level, we describe a general method and demonstrate its
performance out to the subsubsegmental level (two gener-
ations further than previously published approaches). We
present results on a collection of 25 computed tomography
(CT) datasets taken from a Chronic Obstructive Pulmonary
Disease (COPD) study.

1. INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is defined as
incompletely reversible expiratory airflow obstruction due to
emphysematous destruction of the lung parenchyma and re-
modeling of the small airways [2]; it is now the third leading
cause of death in the US [3]. Therefore, it represents a major
health concern, and there are ongoing efforts to better under-
stand this complicated disease.

Recent studies have challenged traditional definitions of
the disease and suggest connections between the two basic
components of COPD: chronic bronchitis (airway disease)
and emphysema (lung tissue destruction). For example, the
National Heart, Lung, and Blood Institute defines emphysema
as “a condition of the lung characterized by abnormal, perma-
nent enlargement of airspaces distal to the terminal bronchi-
ole, accompanied by the destruction of their walls, and with-
out obvious fibrosis” [4]. However, [5] present results sug-
gesting that the narrowing and destruction of terminal bron-
chioles may precede the loss of acini, thus implicating de-
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struction of small airways as possibly causative of emphy-
sema onset.

The authors in [6] reported an association between em-
physematous destruction and reduced total airway count as
measured by the sum of sixth to eighth generation airways
manually determined on volumetric computed tomorgraphy
(CT), further illuminating the link between emphysema and
airway disease. This study indicates that CT can be a valuable
tool for investigating the relationship between distal airway
disease and emphysema progression and motivates the devel-
opment of algorithms to automatically quantify the number of
airway generations visible on CT.

Anatomically, the first several generations of the human
airway tree exhibit a relatively similar topology across sub-
jects, but the topology is known to vary significantly from
person to person for more distal branches. To date there have
been a number of approaches to assign anatomical names to
airway tree branches [7-10]. These approaches limit labeling
up to the segmental level (we refer the reader to [11] for the
airway labeling scheme adopted here).

Motivated by the need to better explore more distal re-
gions of the airway tree and the usefulness of identifying more
distal branches by generation (as opposed to their anatom-
ical labels per se), we propose a novel airway labeling al-
gorithm which assigns specific anatomical names to proxi-
mal branches, and labels distal branches according to their
branching level: segmental, subsegmental, and subsubseg-
mental. Our approach is based on Hidden Markov Tree Model
(HMTM) analysis applied to discrete samples along the air-
way tree. We begin by appling particles sampling [1] to ac-
quire the samples. After applying Kruskal’s minimum span-
ning tree algorithm [12] to establish topology on the parti-
cles, we invoke the HMTM algorithm described in this paper.
In Section II we describe the details of our approach. These
include the HMTM representation, and constituent emission
probabilities, transition probabilities, and extensions to the
Viterbi algorithm for our particular generation labeling task.
In Section Il we demonstrate the performance of our algo-
rithm, and we draw conclusions in Section IV.



2. METHODS

For this effort we assume as given a set of samples along the
airway tree in the form of scale-space particles [1]. Scale-
space particles provide a powerful method for sampling low-
level image features of interest, in our case dark tubes (air-
ways) and enable the implicit sampling of airway tree cen-
terlines. Each particle is characterized by its spatial location,
orientation, and the scale at which the Hessian response is
strongest. Our goal is to assign labels to each of these parti-
cles.

The airway tree can be modeled as a directed, acyclic
graph; hence, the notion of sequential data naturally arises.
We represent the particles data with a graph structure in
which nodes represent particles and edges indicate connec-
tions between neighboring particles. The resulting graph is
undirected and will in general be disconnected. We apply
Kruskal’s minimum spanning tree algorithm to the particles
point set to build a connected tree [12]. For each subgraph
in the spanning tree, each leaf node is considered in turn and
tested as a root node candidate. This induces directional-
ity through the graph (from leaves to root) and permits the
HMTM labeling described below. The most probable set of
airway label assignments is then chosen.

It is important to note that simply relying on branch
points in the tree structure as cues for generation changes
does not work in general: some branches may be missed,
noise branches may be detected, and subgraphs disconnected
from the main airway tree don’t have a natural root node. We
therefore prefer the probabilistic approach described in this
paper. In the following sections we describe the key elements
of our main contribution: namely, the HMTM framework for
airway labeling. These include HMTM representation, emis-
sion and transition probability modeling, and our extensions
to the Viterbi algorithm for optimal label assignment.
Hidden Markov Tree Model Representation. We use a first
order HMTM to infer labels (the hidden variables) for our
particles data. Typical application of hidden Markov models
(HMMs) involves a single sequence of observations and as-
sociated latent variables [13]. The graphical representation of
an example sequence is illustrated in the left of Fig. 1, and the
joint distribution over a general sequence of particles (obser-
vations) and labels (latent variables) is given by

p(p, .. p) g (N)y —

P8 8

N
p(g™) al (g™ g ] [Tpe™ ™)
n=1

where N indicates the number of particles, p("™) represents
the particle data at sequence point n, and g(") represents the
corresponding latent variable indicating the airway label.
While the standard HMM assumes that the hidden states
follow a linear chain, the hidden latent structure in our case is
atree. The graphical representation of a tree structure is given
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Fig. 1. Left: graphical representation of the sequence of par-
ticles (p(l) (2),/)(3),/)(4)) and  their  associated latent  variables
(g“), 2 g(3) <4)). Right: graphical representation of a tree structure. An

HMTM can be applied in this instance by considering two sequences: 1) the particles
(p(l),p@), 0(3)’ p(4)) and associated latent variables (g(l),g(2>7 g<3),g(4)),
and 2) the particles (p(ll)7 p(2/), PICN
(g(ll) s g(2/) s g(g), g(4)). Shaded circles represent observed variables; unshaded
circles represent unobserved variables.

p(4)) and associated latent variables

in the right of Fig. 1, and the general expression for the joint
distribution is given by

p(PiG) = ][
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where we have used the operator to indicate set cardi-
nality and pa(g) to represent the parents of g. P; is the set
of particles derived from the test image, and G; is the set of
associated latent variables. The set Gj.,¢ comprises all la-
tent variables corresponding to leaf particles (not including
the root). We describe the emission probabilities p(p(™ |g(™))
and transition probabilities p(g(™ |pa(g("™) below.
Emission Probabilities. The emission probabilities give the
probability of observing a particle p(") given latent variable
g(™). The observations in our HMTM framework consist of a

partlcle s spatial location (p ) scale (ps" ) and orientation

(pe )) These quantities can be appreciated from Fig. 2.

We propose to use kernel density estimation (KDE) [14]
to represent the conditional probability of observing p(™)
given g(™%, where ¢("%) represents the i* component of
g™ (g9 € {0,1}, where g™% = 1 indicates the n'"
particle belongs to label ¢). KDE is a form of nonparametric
density estimation and is a suitable choice in our case given
that there is not a clear parametric model for the distribution
of the airway labels. To apply KDE we deformably register a
collection of labeled particles datasets to the test dataset. The
complete set of labeled and registered particles is designated
as Py, and the subset of particles having latent variable state
g™ is given by P 4. Making the assumption that the scale,
orientation, and Spatial location terms are independent, we



Fig. 2. Close-up of particle glyphs overlayed on an axial CT slice. The glyphs clearly
indicate the observed quantities in the HMTM, namely the spatial location, orientation,
and scale of each particle (image from [1]).

can express the emission probabilities as

1

p(p™]g ) = (P — ps|0,02)x

g pE'Pg(i)
Expon(py”) — pp|Ap) x Bxpon(Z(p8", pe)|As)  (3)

where Ny is the number of particles labeled as g@,
N (| I, 02) represents a normal distribution with mean p
and variance o2, and Expon(.|\) represents the exponential
distribution with rate parameter A\. The parameters of, Aps
and A\, are learned from training data.

Transition Probabilities. Transition probabilities indicate
the probability of transitioning from one latent state to an-
other and are captured in a transition matrix. The transition
matrix in our model, A, is a function of both the change in
scale and the change in direction between a parent particle
and its child:

A (p™, pt) ~

p(p® — pl™, Z(p®, plM)]i — j) x p(i — §) (@)

where p(?) is a parent of p("), and i — j indicates the tran-
sition from state ¢ to state j. The likelihood and prior terms
given in Eq. 4 are learned from the labeled training data set.
With the elements of A defined, we can now express the
conditional probability of g(") given its parents as

p(g™ |pa(g™)) =

1 H ﬁ ﬁAQ@,j)g(n,k) )
Z(pa(g™)) : i
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where N is the number of states, and Z(pa(g(™)) is a nor-
malization constant given by

N,

Z(pa(g™) = Y [

k=1
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(p.3)
g
I II4%

g(® epa(g(™)) j=1

(6)

Extending the Viterbi Algorithm. The Viterbi algorithm is
typically used to find the most probable sequence of latent
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Fig. 3. Factor graph representation of the graphical model shown in the right of
Fig. 1.

variable states for a given observation sequence [15]. In order
to extend the algorithm to the tree structures that characterize
our data, it is helpful to consider a factor graph representation
of our directed graphical model. Factor graphs rely on the fact
that directed (and undirected) graphs allow the correspond-
ing joint distribution to be defined as a product of factors, f,
over subsets of variables [16]. Factor graphs can be generated
from directed graphs by inserting additional nodes between
variable nodes for each of the factors. Referring again to the
graphical model shown in the right of Fig. 1, the correspond-
ing factor graph representation is shown in Fig. 3, and the
general expression for the factors for n > 1 is given by

fa(pa(g™),g™) = p(p™|g™)p(g™|pa(g™))

and forn =1

f1g™) = pgM)p(pMg™M)

Note that we have adopted a simplified factor graph represen-
tation in which the observation variables, p, are not explicitly
represented, and the emission probabilities have been com-
bined with the transition probabilities in our expression for
the factors (Eq. 7).

The Viterbi algorithm can be seen as a specific application
of the max sum algorithm applied to HMMSs [14]. The max
sum algorithm can be realized with a message passing frame-
work using the factor graph representation. The algorithm
proceeds with a forward recursion stage involving factor-to-
variable and variable-to-factor messages followed by a back-
tracking stage that specifically identifies latent variable values
that maximize the joint distribution. In our case the factor-to-
variable message is given by

(7

®)
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and the variable-to-factor message is

Hg(m) = fr i (g(n)) = Bfn—g (g(n)) (10)



Now letting w(g(™) = 1, g (™) we have the follow-
ing recursion expression

w(g™) =p(p™|g™) +

>

g(®) epa(g®))

max
g(®) epa(g(™)

w(g®) (11)

The algorithm proceeds by performing the forward recursion,
updating the w( g(”)) terms along the way. During the forward
recursion we also maintain a mapping, ¢, from latent variable
states to parent latent variable states that maximize contribu-
tions to the summation Eq. 11. This mapping enables us to
perform backtracking after we have completed the forward
recursion, thus specifically defining latent variable states (i.e.
airway labels) that are jointly most probable given our obser-
vation (particle) data.

3. EXPERIMENTS AND RESULTS

25 particles datasets were manually labeled by two pulmo-
nologists. We performed a series of leave-one-out tests: 24
datasets were used as the atlas set, and the remaining dataset
was used as the test set. For each test the parameters de-
scribed above for the emission and transition probabilities
were learned from the training set.

Tables 1 and 2 show quantitative results of our exper-
iments in the form of normalized confusion matrices: each
entry indicates the fraction that the algorithm-assigned labels
either agree with the reference standard label or are confused
with another label; perfect agreement is indicated by a value
of 1.0 in each of the shaded entries. The values are com-
puted across all 25 leave-one-out experiments. Results in Ta-
ble 1 show agreement using KDE classification using emis-
sion probabilities only and indicate performance if each parti-
cle is labeled irrespective of the overall tree structure to which
it belongs. Conversely, the results in Table 2 correspond to
the final algorithm output after HMTM inference has been
performed over the tree structure as a whole.

There is a noticeable performance increase for the most

Inp(g™|pa(g™))+

distal airway branches (segmental, sub-segmental, and subsub-

segmental) when using the HMTM model. There is a slight
dip in performance for the superior division bronchus (SDB)
and lingular bronchus (LB), but it is worthwhile to note that
both of these branches are quite short. When considering
classification performance overall, the KDE approach has an
accuracy of 61.2%, while the complete HMTM model has an
improved accuracy of 71.3%.

Another desirable feature of the complete HMTM model
over simple KDE classification is that it takes the tree struc-
ture into account and prevents impossible state transitions.
This can be clearly seen in Fig. 4. The KDE classifier can,
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Table 1. Results using KDE classification. T = trachea, MB = main bronchi, ULB =
upper lobe bronchus, SDB = superior division bronchus, LB = lingular bronchus, MLB
= middle lobe bronchus, IB = intermediate bronchus, LLB = lower lobe bronchus, S =
segmental bronchus, SS = sub-segmental bronchus, SSS = subsub-segmental bronchus.
T MB ULB SDB LB MLB IB LLB S SS  sss
099 001 000 000 000 000 000 000 000 000 000
003 091 000 000 000 000 003 002 000 000 000
000 000 [ 098 000 000 000 000 000 000 000 000
000 000 0030900 000 000 000 000 005 002 000
000 001 003 000 085 000 000 000 009 001 00l
000 000 000 000 000 094 000 000 005 001 000
001 001 000 001 000 000 08 014 000 000 000
000 001 000 000 000 000 03 080 005 002 000
000 000 001 00l 003 002 000 006 062 019 008
000 000 000 000 000 001 000 002 021 [ 044 031
000 000 000 000 000 000 000 000 011 031 058

T
MB
ULB
SDB
LB
MLB
1B
LLB
S
SS
SSS

Table 2. Results using HMTM. Abbreviations are as in Table 1.
T MB ULB_ SDB LB MLB 1B LLB S ss
099 001 000 000 000 000 000 000 000 0.00
006 [094 000 000 000 000 000 000 000 0.00
000 004 095 000 001 000 000 000 000 0.0
000 000 006 073 000 000 000 000 021 000
000 000 001 000 7078 000 000 000 021 000
000 000 000 000 000 095 000 001 004 000
001 004 000 000 000 000 [[084 010 000 0.00
000 000 001 000 000 000 003 [ 08 011 000
000 000 001 000 001 001 000 004 067 025
000 000 000 000 000 000 000 000 0.13 [1059
000 000 000 000 000 000 000 000 002 026

SSS
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.28
0.71

T
MB
ULB
SDB
LB
MLB
1B
LLB
S
SS
SSS

e.g., label consecutive particles as sub-segmental, subsub-
segmental, and then sub-segmental again, which is an impos-
sible progression. The HMTM model prevents such scenarios
and enforces only allowable state transitions.

4. CONCLUSION

We have introduced a novel, probabilistic method — Hid-
den Markov Tree Model — for assigning labels to samples
of the airway tree represented by particle points. Previous
approaches have focused on labeling out to the segmental
level; we show results out to the subsub-segmental level. Our
framework is general and can in theory be applied to even
more distal branches provided a labeled atlas is given. The
framework we present can also be applied to airway trees that
are not fully connected and to trees with noise branches and
missing branches. Space limitations prevent a full presenta-
tion of these results for this paper.
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