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ABSTRACT

This paper investigates a diffeomorphic point-set registra-
tion based on non-stationary mixture models. The goal is to
improve the non-linear registration of anatomical structures
by representing each point as a general non-stationary ker-
nel that provides information about the shape of that point.
Our framework generalizes work done by others that use
stationary models. We achieve this by integrating the shape
at each point when calculating the point-set similarity and
transforming it according to the calculated deformation. We
also restrict the non-rigid transform to the space of symmetric
diffeomorphisms. Our algorithm is validated in synthetic and
human datasets in two different applications: fiber bundle
and lung airways registration. Our results shows that non-
stationary mixture models are superior to Gaussian mixture
models and methods that do not take into account the shape
of each point.

1. INTRODUCTION

Point-set based representations arise in a wide variety of med-
ical imaging applications. Examples include the extraction of
airways, bones, and white matter tracts [1, 2, 3]. The abil-
ity to register two different point-sets representing the same
anatomical structure is critical to the statistical study of differ-
ent pathologies. Non-rigid point-set registration algorithms
exist (e.g. [4, 5]); however, these algorithms represent struc-
tures as a collection of points in R3 neglecting valuable infor-
mation regarding the shape of the structure, e.g. the thickness
of the trachea. In this work we generalize point-set regis-
tration by endowing points with kernel functions that encode
either shape (e.g. tube or ellipsoid) or uncertainty in physical
location. We refer to these data sets as shaped particles.

When spatially aligning two anatomical structures, it is
desirable that the transformations be diffeomorphic [6, 7] and
symmetric [7, 8]. Restricting the transform to a diffeomor-

phism preserves the topology of the registered structure, pre-
vents the transform from introducing foldings which are often
physically impossible, and guarantees that the transform is in-
vertible. Symmetry guarantees that the resulting transform is
identical regardless of input ordering, making the obtained
transformations more appropriate for further statistical anal-
yses [7, 8]. To the best of our knowledge, algorithms that
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obtain non-rigid transforms between unlabeled point-sets dis-
regard the diffeomorphic [5, 9] and symmetry constraints[10].

Our contribution in this paper is twofold. Unlike [4, 5],
we present a registration algorithm with a non-stationary cal-
culation of the point-set similarity by using a different ker-
nel function for each point. The point-set is in turn repre-
sented by a mixture of kernels. The goal is to minimize the
discrepancy measurement between the mixture models of the
point sets that are being registered. Framing the problem in
this way enables us to utilize information about structure co-
dimensionality and thus achieve more accurate registrations.
Second, our algorithm guarantees that the resulting non-rigid
transform is diffeomorphic and symmetric.

We evaluate our registration algorithm on synthetic data
sets and data sets derived from human airway trees and white
matter fiber tracts. We show results of the registration of a set
of subjects to illustrate the performance of our method and its
applicability to population-based studies. We show the utility
of our technique by performing a statistical analysis on the
transforms of two airway sets, and characterize differences in
subjects with chronic obstructive pulmonary disease (COPD).

2. METHODS

2.1. Point-set Dense Representation in Space

Let P = {p1, . . . ,pN} be a shaped particle data set dis-
tributed on the centerline or surface of an anatomical struc-
ture S . Each shaped particle is given by pi = (ci, θi), where
ci ∈ R3 is the center of the particle, and θi are the parame-
ters of the shape. We represent the density of particles at each
point in space as a mixture of shaped kernel functions

d(x) = z
N
∑

i=1

Ki(pi,x) (1)

where Ki(·, ·) is a positive definite kernel defined at each ci
with shape defined by parameters θi, and z is a normaliza-
tion constant ensuring

∫

d(x)dx = 1. We next define the in-
ner product between two shaped particle sets as the L2 inner
product between density functions:

⟨P1, P2⟩ := ⟨d1, d2⟩ =

∫

d1(x)d2(x)dx =

z1z2
∑

ij

∫

K1i(p1i ,x)K2j (p2j ,x)dx.
(2)
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leading to a similarity measure between particle sets:

cor(P1, P2) = cor(d1, d2) = 1−
⟨d1, d2⟩2

⟨d1⟩⟨d2⟩
(3)

This similarity measure has been shown to have a rich number
of mathematical interpretations which are generalizable to the
shaped particle case. As d(x) in eq. (1) is a density function,
cor(·, ·) is proportional to Renyi’s Quadratic Entropy [4] and
a special case of the power divergence between two proba-
bility densities [5]. From the robust statistics point of view,
it is equivalent to an M-Estimator on the point-to-point dis-
tances between the particle sets [4]. Inscribing the similarity
measure in such mathematical frameworks not only broadens
its interpretation, but opens the door to studying its robust-
ness with respect to noise. Having presented our similarity
measure for shaped particle sets, we present a symmetric dif-
feomorphic registration algorithm.

2.2. Registration of Particle-Sets

When registering two shaped particle sets, we look for a trans-
form which, when applied to the set P1 maps it to a set having
a high resemblance with P2: we search for the map φ : R3 %→
R3 such that φ(P1) := {φ(p1i)}i=1...N ∼ P2.

As stated earlier, we seek a transformation that is symmet-
ric and diffeomorphic. The parameters of such a transform, φ,
are 1) a coordinate x; 2) a time t ∈ [0, 1] such that φ(·, 0) =
Id, φ(P1, 1) ∼ P2 and φ−1(P2, 1) ∼ P1; and 3) a veloc-
ity field v(x, t) such that we calculate φ integrating v along

time: φ(x, 1) = φ(x, 0) +
∫ 1

0
v(φ(x, t), t)dt. The length

of the path for x along the map is D(φ(x, 0),φ(x, 1)) =
∫ 1

0
∥v(x, t)∥Ldt, where L defines a linear operator regulariz-

ing the velocity field. The norm ∥ ·∥L regularizes the velocity
field via the linear difference operator L = a∇+ b Id where
a and b are constants. Then, φ(x, t), is a diffeomorphism.

We calculate the transform φ(x, t) using the symmetric
diffeomorphic optimizer algorithm described in [7]. We si-
multaneously look for two maps φ1 and φ2 such that one is
the symmetric inverse of the other: φ1(x, t) = φ2(z, 1 − t).
Combined with the requirement φ1(P1, 1) ∼ P2, this leads to
φ1 and φ2 mapping P1 to P2: φ−1

2 (φ1(P1, t), 1 − t) ∼ P2.
We compute φ1 and φ2 by minimizing:

E(P1, P2) = inf
φ1,φ2

∫

1
2

0

{

∥v1(x, t)∥
2
L + ∥v2(x, t)∥

2
L

}

dt

+ cor(φ1(P1,
1
2
),φ2(P2,

1
2
))

(4)
subjecting φ1,φ2 to be a diffeomorphism: dφi(x, t)/dt =
vi(φi(x, t), t); φi(x, 0) = Id; and φi(φ

−1
i ) = Id and con-

straining both transformations to having the same length
∥v1(·, t)∥ = ∥v2(·, t)∥. The first term of eq. (4) ensures that
φ1 and φ2 are smooth. The second term sets the transforms
to map P1 to P2 symmetrically by enforcing the similar-
ity of both particle sets deformed half way. The constraint

Fig. 1: Illustration of how the particles assume different
shapes in different applications. At the top we show the ex-
tracted airway with ellipsoidal particles, at the bottom a white
matter bundle with tube-shaped particles.

φ1(x,
1

2
) = φ2(x,

1

2
) is included in the fact that we integrate

the solution from 0 to 1

2
. We minimize this energy using

the algorithm presented by Avants et al. [7]. This algorithm
produces a smooth invertible map φ1 that will map P1 to P2.

To minimize eq. (4) given the specified constraints, we
use the following Euler-Lagrange equation for φ1:

∇
φ1

(

x,
1
2

)E = 2Lv1(x,
1
2
) +

2⟨P̄1, P̄2⟩

⟨P̄1⟩⟨P̄2⟩

×

(

d̄2(x)−
⟨P̄1, P̄2⟩

⟨P̄2⟩
d̄1(x)

)

|Dφ1|∇d̄1(x)

(5)

and the gradient w.r.t. φ2 is analogous. In eq. (5), P̄i :=
φi(Pi,

1
2
), in which each particle is deformed as φi(p,

1
2
) =

(φi(c,
1
2
),φi(θ,

1
2
)), d̄i(x) is the density function that corre-

sponds to P̄i and |Dφ| is the Jacobian of the transformation
φ. The action of the diffeomorphism φ over the particle pa-
rameters must be defined for each particle type.

2.3. Transformation of the Particle Features

We analyze shape features corresponding to line segments
and ellipsoids and consider specific applications
Line segment: When we consider line-shaped particles the
feature fi ∈ R3 is the vector defining the direction and length
of the line. We reorient and rescale the particle according to
the Jacobian of the transformation φ(fi) = Dφ(pi)fi.
Ellipsoid: When we consider ellipsoidal-shaped particles the
feature is a positive-definite symmetric matrix, Fi ∈ Sym3.
We rotate and rescale the ellipsoid according to the deforma-
tion φ(Fi) = Dφ(pi)Fi[Dφ(pi)]T .

2.4. Application-Specific Shaped Particles

Airway datasets In the case of our airway datasets, we sam-
ple the airway centerline with scale space particles [3]. The
particles are equally distributed along the centerline of the air-
ways at a distance s (fig. 1). Such particles have an ellipsoidal
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shape. Their minor axis is aligned with the airway’s center-
line and has a length of s�2. The remaining axes have equal
length set to the lumen size of the airway. We define the ker-
nel Ki:

Ki(pi�x) := exp
�

� (x � pi)
TF� 1

i (x � pi)
�

(6)

where the smallest eigenvalue of Fi is set to the inter-particle
distance s�2 with its eigenvector aligned with the extracted
airway direction, and the other two eigenvalues have the lu-
men size at pi as their magnitude. The feature � used to shape
the matrix is an ellipsoid represented by Fi � Sym3 which we
deform as described in section 2.3. In the limiting case our
ellipsoids become infinitely thin, and the ellipsoids are discs
reconstructing the tubular structure of the airways.
White Matter Tracts With respect to our white matter tract
datasets, we consider the particles shaped as line segments. A
white-matter tract particle set P is composed by several sub-
sets P = �P 1�����PN� such that each P j = �pj

1�����p
j
Nj�

represents a curve. Each particle is shaped as a segment such
that the feature �ji associated with particle pj

i is f ji = (pj
i+1 �

p
j
i ) for i = 1��N j � 1. Then, the application-specific kernel

which represents each white matter tract as a sequence of seg-
ments is a function of the distance between the point x and the
distance between that point and the segment f ji at pj

i :

Kj
i (p

j
i�x) := exp

�

� dist(x�f ji )
�

(7)

where dist(x�f ji ) is the distance between the point x and the

segment f ji :

dist(x�f ji ) :=

�

�

�

�

�

�pj
i � x� t � 0

�pj
i + t(pj

i+1 � p
j
i ) � x� 0 < t < 1

�pj
i+1 � x� 1 � t

�

t =
(x � p

j
i ) �(p

j
i+1 � p

j
i )

�pj
i+1 � p

j
i�

2

We have presented two different applications with differently-
shaped particles and kernels. Combining this with our
particle-set representation scheme and registration algorithm,
we demonstrate our registration algorithm in synthetic and
human datasets and show a statistical application using the
resulting deformation fields.

3. EXPERIMENTS

Synthetic Experiments Our non-stationary mixture model
was compared against the Gaussian mixture model (GMM)
based on two implementations: the one originally proposed
by [5] (GMM) and an extension based on our symmetric
diffeomorphic framework using stationary Gaussian kernels
(GMM diff). We generated smooth random deformations
by producing Gaussian random vector fields and convolv-
ing them with a Gaussian kernel. Then, we used the vector

Trachea 

Left main bronchi 

Superior lobar 
bronchus 

Trachea 

B1 

B3 

(a) Template (b) Detailed view of results

(c) Two deformed examples (d) Comparison boxplot

Fig. 2: Synthetic experiment results. (a) Airway tree tem-
plate. (b) Detailed view with anatomy annotations. Ground
truth (yellow), deformed airway with our approach (red)
and GMM result (blue). It is worth noting how our ap-
proach achieves a better registration in the trachea and main
bronchus. (c) Two randomly deformed examples. (d) Quanti-
tative comparison showing that our method has a lower MSE
than GMM when using our deformation model (diff) and
than [5]

field exponential operator [11] to obtain a set of diffeomor-
phisms. We applied each diffeomorphism to our particle set
transforming the points and the particle shapes according to
section 2.3. Finally, we registered each set to the original
template and quantified the registration error by taking the
mean squared error (MSE) between each registered particle
and the original position of the particle in the template. In
fig. 2 we show the original template, the two deformed cases
and the quantitative results for our registration comparison.
Our method proved to perform better as it had an MSE of
0�185mm � 0�31mm2 lower than the diffeomorphic GMM:
0�245 � �084 and GMM [5]: 0�261 � �095mm2.

Human Data Airway Experiments We analyzed 20 volu-
metric chest CT datasets acquired at full inspiration (10 nor-
mal controls and 10 GOLD 4 COPD disease stage). The scans
were performed either with GE scanner and Siemens scan-
ners. In-plane pixel spacing ranged from 0.54mm to 0.85mm
across all scans. The CT were down-sampled with a x4 ratio
and the airway tree extracted using scale-space particles [3].
We show the results of our registration algorithm in the top
right image of fig. 3.

As a proof-of-concept, we performed a statistical analy-
sis on characteristic deformations of COPD which we show
in fig. 4. We calculated the Jacobian determinant image at
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Initial linear registration Our deformable registration

Fig. 3: Human data results. Top row: Airway trees from
20 subjects registered using our algorithm. Bottom row: 43
white matter tracts registered with our method. In both rows,
each color indicates a different subject.

a resolution of 0�5mm3 for each of the diffeomorphisms ob-
tained in the previous step. Then we used permutation based
testing [12] in order to look for significant changes in the de-
formation without assuming hypothesis on the distribution of
the Jacobian determinants. We found an area in which the tra-
chea of the patients is significantly enlarged with a t-score of
1�5 and a p-value< �05.

Human Data White Matter Tract Experiments Diffusion-
weighted images from 43 subjects were acquired on a GE
Signa HDxt 3.0T scanner using an EPI sequence of 51 direc-
tions with b=900 s/mm2, and 8 with b=0 s/mm2, with voxels
of 1�7mm3. The left uncinate fasciculi were tracked by ex-
perts using 3D Slicer (www.slicer.org). We registered all the
tracts with our algorithm. We show the result in fig. 3, where
we can observe the consistency of the registered dataset.

4. CONCLUSION

In this work we present a method for registering point-sets
endowed with a kernel function that defines the ”shaped”
of the point within a symmetric diffeomorphic transforma-
tion space. We tested our algorithm in synthetic and human
datasets and we performed a statistical study on the defor-
mation fields to illustrate the applicability of our algorithm
showing improvement over current stationary techniques.
There are other options exploiting non-stationary informa-
tion: 1) When it is necessary to include in orientation in the
model, like orientable surfaces or curves, the currents [13]
approach is an interesting option. Our application cases how-
ever, do not need to model orientation. 2) Other approach
recently proposed is restricting the deformation fields instead
of changing the similarity metric [14], however no-current
registration algorithm employs it. Finally, our approach may
directly take advantage of information provided by the al-
gorithms that extract point-set representations of anatomical
structures [3] in order to shape each point in the set.

Fig. 4: Statistical analysis projected on the template: areas
showing a compression in the COPD population are marked
in red (p � value < 0�05).

5. REFERENCES

[1] P J Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi,

“In vivo fiber tractography using DT-MRI data,” MRM, 2000.

[2] S.R. Aylward and E. Bullitt, “Initialization, noise, singularities,

and scale in height ridge traversal for tubular object centerline

extraction,” IEEE TMI, 2002.

[3] Gordon L. Kindlmann, R.S.J. Estepar, S.M. Smith, and Carl-

Fredrik Westin, “Sampling and Visualizing Creases with

Scale-Space Particles,” IEEE Viz, 2009.

[4] Yanghai Tsin and Takeo Kanade, “A Correlation-Based Ap-

proach to Robust Point Set Registration,” in ECCV, 2004.

[5] Bing Jian and Baba Vemuri, “Robust Point Set Registration

Using Gaussian Mixture Models,” IEEE PAMI, 2011.

[6] SC Joshi and MI Miller, “Landmark matching via large defor-

mation diffeomorphisms,” IEEE TIP, 2000.

[7] B. Avants, C.L. Epstein, M. Grossman, and James C. Gee,

“Symmetric diffeomorphic image registration with cross-

correlation: Evaluating automated labeling of elderly and neu-

rodegenerative brain,” MIA, 2008.

[8] G.E. Christensen and H J Johnson, “Consistent image registra-

tion,” IEEE TMI, 2001.

[9] A.M. Peter and A. Rangarajan, “Information Geometry for

Landmark Shape Analysis: Unifying Shape Representation

and Deformation,” IEEE PAMI, 2009.

[10] H. Guo, A. Rangarajan, S. Joshi, and L. Younes, “Non-rigid

registration of shapes via diffeomorphic point matching,” in

ISBI, 2004.

[11] T Vercauteren, X Pennec, A Perchant, and N Ayache, “Sym-

metric Log-Domain Diffeomorphic Registration: A Demons-

Based Approach,” in MICCAI, 2008.

[12] T E. Nichols and A P. Holmes, “Nonparametric permutation

tests for functional neuroimaging: a primer with examples,”

HBM, 2002.

[13] S Durrleman, X Pennec, A Trouvè, and N Ayache, “Statistical
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