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ABSTRACT 
 
We present a probability model for lung airways in 
computed tomography (CT) images. Lung airways are 
tubular structures that display specific features, such as low 
intensity and proximity to vessels and bronchial walls. From 
these features, the posterior probability for the airway 
feature space was computed using a Bayesian model based 
on 20 CT images from subjects with different degrees of 
Chronic Obstructive Pulmonary Disease (COPD). The 
likelihood probability was modeled using both a Gaussian 
distribution and a nonparametric kernel density estimation 
method. After exhaustive feature selection, good specificity 
and sensitivity were achieved in a cross-validation study for 
both the Gaussian (0.83, 0.87) and the nonparametric 
method (0.79, 0.89). The model generalizes well when 
trained using images from a late stage COPD group. This 
probability model may facilitate airway extraction and 
quantitative assessment of lung diseases, which is useful in 
many clinical and research settings. 
 

Index Terms—CT, lung, probability model, airway 
segmentation, chronic obstructive pulmonary disease 
 

1. INTRODUCTION 
 
Chronic Obstructive Pulmonary Disease (COPD) is the third 
leading cause of death and disability in the world. COPD is 
characterized by progressive expiratory airflow obstruction, 
due to one or the combination of two phenotypes: 
emphysema and airway obstruction. The analysis of thoracic 
computed tomography (CT) images helps to better 
characterize COPD by studying anatomical remodeling due 
to tissue loss and changes in airway dimensions. This 
analysis relies on accurate segmentation of various 
structures in the lungs, such as airways and vessels, made 
challenging because of natural and pathological variability 
in size, curvature, orientation, and proximity to other organs. 

Traditionally, airways in lung CT images have been 
associated with image features such as low attenuation 
image values – airways are filled with air-, surrounded by 
high attenuation circular or semi-circular shapes. To 
segment airways, the search space could typically 
encompass the volume of the entire lung. To limit the search 
space, prior knowledge of the lung anatomy can be used, for 
instance by starting the search from a point in the trachea, to 

detect the rest of the airway tree using region growing 
algorithms. Unfortunately, these methods often leak [1], [2] 
into the parenchyma due to emphysema-related wall 
thinning or partial volume effects that blur the airway walls. 
Furthermore, they often fail to detect smaller airway 
structures and do not provide a complete segmentation in 
the presence of airway obstruction. Alternative methods 
such as scale-space particle systems [3] sample the entire 
search space, thus allowing an efficient comprehensive 
search in the entire lung. 

Lo et al. [4] used local image descriptors to model 
airway appearance as input for subsequent segmentation. 
Unlike this work, the objective of this study is to present an 
airway posterior probability model integrating the 
information of the feature space. The outcome of such 
model is a probabilistic map that would be useful to 
optimize the cost function for region growing or fast 
marching-based segmentation algorithms, and provide 
morphological clues for an efficient sampling of the image 
space. 

The manuscript is organized as follows: In Section 2, 
we describe the airway image features and the probability 
model. In Section 3, we describe the experiment carried out 
to verify the model proposed. In Section 4, we present the 
results of the experiment. In Section 5, we discuss the 
challenges and future extensions. 
 

2. AIRWAY MODEL  
 
2.1. Airway Features 
 
In CT images, lung airways display characteristic features. 
For instance, it is often observed that the airways are found 
next to vessels running in a parallel direction [1]. In 
addition, we formalize other features that characterize 
airways as follows: (1) airway lumens are dark elongated 
tubular structures, and (2) airways comprise of a lumen 
surrounded by an airway wall.  

 
Fig. 1 Principal directions of the Hessian of various structures: 
(left) wall, (center) airway, and (right) vessel. 
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The eigenvalue analysis of the Hessian matrix has been 
proposed to detect various image features [5]. The 
magnitude, sign and relative values of the eigenvalues λk 
(k=1,2,3) corresponding to the kth normalized eigenvector 
ûk, ordered such that |λ1|≤|λ2|≤|λ3|, give clues as to the type 
of underlying structure (see Fig. 1). In this paper we have 
used combinations of these eigenvalues to derive local 
operators that produce maximal response for vessels, 
airways and airway wall voxels, as summarized in Table 1. 

All Hessian matrix-based features were calculated at 
four different scales using Gaussian function with standard 
deviation σ ranging from 0.5 to 2.0 mm. For each feature, 
the value taken is the maximum response across the scales. 
 

 λ1 λ2 λ3 
Bright tube (e.g. vessels) Low ≈ 0 High- High- 
Dark tube (e.g. airways) Low ≈ 0 High+ High+ 
Bright sheet-like (e.g. airway walls) Low ≈ 0 Low High- 

Table 1. Possible structure patterns given combination of the 
Hessian eigenvalues λk in 3D images. 

 
Using prior knowledge about the lung anatomy, we can 

define the following features for each voxel x: 
1. Intensity: Intensity  ( ) is the voxel value in Hounsfield 

units (HU). 
2. Vesselness and airwayness: Vesselness  ( ) is computed 

using Frangi’s filter [5]. Somewhat similar to vesselness, 
airwayness  ( ) is a measure that selects voxels whose 
combination of eigenvalues is given as defined in the 
second row of Table 1. 
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and α  β, and c are parameters that control the sensitivity 
of the ratios, set at 0.5, 0.5, and 70, as suggested in [5]. 

3. Wallness: Wallness  ( ) detects structures with a 
change in the direction of the highest curvature. We 
define a novel measure that computes the normalized 
Laplacian,  , of the mode of the Hessian   [6] in the 
highest curvature direction (û3) modulated by the mode 
itself, as given by 
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The Laplacian compensates the response of the mode of 
the Hessian around the wall boundaries to give a strong 
response at the wall center. 

4. Distances to vessels, airways and bronchial walls: 
Histogram equalization was performed on each of the 
computed features in order to have an equal distribution 
of the responses at a certain threshold. Only voxels with 
post-equalization value > 0.5 were considered to be 
vessels, airways and bronchial walls, respectively. For 
each voxel, the distances to the vessels   ( ), airways 

  ( ) and bronchial walls   ( ) were then computed 
using Euclidean distance transform.  

 
2.2. Probability Model 
 
The posterior probability  ( | ̂) of those voxels being 
airway voxels given the feature matrix  ̂, was estimated 
using the well-known Bayes’ theorem  

 ( | ̂)    ( ̂| )    ( )
      

 (3) 
where           ( ̂| )    ( )    ( ̂| ̅)    ( ̅).  
 A similar expression can be derived for the non-airway 
class  ̅. The a priori probabilities of being airway   ( ) and 
non-airway   ( ̅) are simply taken as the fraction of airway 
voxels and non-airway voxels with respect to the total voxel 
count in the reference data, respectively. 

The likelihood of airway   ( ̂| ) and non-airway 
  ( ̂| ̅) for the feature space  ̂ was modeled using a single 
multivariate Gaussian distribution and a nonparametric 
kernel density estimation technique based on non-linear 
principal component analysis (PCA) [7].  

The probability distribution function of the Gaussian 
model is given by  

  ( ̂)  ( ̂|   )   
    ⁄ | |  ⁄

  {  
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where µ is the D-dimensional mean of the feature matrix  ̂, 
Σ is the covariance matrix, and |Σ| is the determinant of Σ.  
 The likelihood computed by the kernel density 
estimation method is defined as 

  ( ̂)            ( ̂  ̂) (5) 

where U is the eigenvector matrix of the kernel matrix 
 ( ̂  ̂) for the training data vector  ̂. The kernel is chosen to 

be a Gaussian,  (   )    ‖   ‖ 
   . For N testing data points in 

 ̂,     is a 1×N column matrix of ones. 
 

3. EXPERIMENTAL PROCEDURE 
 
To verify the airway model proposed, we analyzed 20 CT 
images from patients enrolled in the COPDGene Program 
(www.copdgene.org), a multicenter study of genetic and 
epidemiologic risk factors associated with COPD. Four 
images were of healthy subjects and the rest were evenly 
chosen from each Global Initiative for COPD (GOLD) 
(www.goldcopd.com) stage 1-4. The images were taken 
with different scanners using the COPDGene acquisition 
protocol. 
 
3.1. Reference Construction 
 
The reference was constructed from a conservative 
segmentation of the left and right airway trees using a fast 
marching algorithm, seeded at the trachea. Arrival time was 
thresholded initially at 100, gradually increased until 
leakage (voxel count increase > 100%) occurred, upon 
which the previous value was taken as the stopping time.  
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Fig. 2. (left) 2D coronal slice from the original CT; (center) 3D 
rendering of the conservative segmentation by fast marching; 
(right) Three labeled zones: AIRWAY zone in white, NON-
AIRWAYclose zone in pink and NON-AIRWAYfar zone in red. 
 
The centerline was calculated using 3D binary thinning of 
the fully-grown tree. Voxels in the centerline, as well as 
those within the one-pixel dilate threshold, were labeled 
AIRWAY. Voxels in the zone between 5 to 10mm from the 
airway tree were labeled NON-AIRWAYclose. All voxels from 
10 to 20mm outside this zone were given the label NON-
AIRWAYfar. The feature matrix  ̂ was calculated for all 
voxels in each group label. Fig. 2 illustrates a slice of the 
original CT, the conservative airway tree and the three 
labeled zones. 

 
3.2. Training and Cross-validation 
 
The feature extraction method described in Section 2 was 
implemented using InsightToolkit and UNU (Utah Nrrd 
Utilities). Images of the left and the right lung were trained 
separately. Two classes were defined: the airway class (CA), 
and the combined close and far non-airway classes (CNA). 
Features from each class were normalized and scaled using 
the mean and standard deviation. Each class was then 
downsampled –to limit each class of every image to a 
manageable maximum of 5000 points– before calculating 
the posterior probability. Training and 5-fold cross-
validation were performed in  (Mathworks, Natick, 
MA, US) to test the performance of our posterior 
probability. Specificity (Sp.) and sensitivity (Sens.) were 
computed using a maximum a posteriori probability (MAP) 
classifier criterion. In addition, the medians of the histogram 
for the posterior probabilities in the testing set were 
computed for both airway and non-airway classes. 
 
3.3. Feature Selection 
 
We trained and cross-validated separately the Gaussian and 
nonparametric models, using (1) all the features, and (2) an 
exhaustively determined optimal combination of features for 
each model. The minimum distance to the perfect classifier 
(0,1) (ACd) was used to rank the combinations, maximizing 
sensitivity over specificity. The optimal combinations for 

the Gaussian and the nonparametric likelihood models are 
[ ( ),   ( ),   ( ),   ( ),  ( )], and [ ( ),   ( ),   ( ), 
 ( )], respectively. 
 

4. RESULTS 
 
Cross-validation results for feature spaces of airway class 
 ̂(  ) and non-airway class  ̂(   ) are given in Table 2. The 
results reveal that feature selection is important in the 
Gaussian model but did not greatly improve the 
nonparametric method. Fig. 3 shows the histograms of two 
posterior probabilities  ( | ̂(   )) and  ( | ̂(  )), 
computed using nonparametric method. While for both 
models, these histograms have single modes at 0 and 1; the 
descent in the histogram peak is steeper in the Gaussian 
model (data not shown), as suggested by the histogram 
median values MA and MNA given in Table 2. 

Feature  
space 

MA MNA Sp. Sens. ACd 

Gaussian 
All features 0.98 0.01 0.56 0.94 0.44 
Optimal set  0.90 0.04 0.84 0.85 0.22 

Nonparametric 
All features 0.78 0.11 0.74 0.91 0.28 
Optimal set  0.80 0.10 0.88 0.83 0.21 
  
Table 2. Cross validation results for  
CA and CNA using both models. MA  
and MNA refer to median of 
histogram of posterior probabilities 
 ( | ̂(  )) and  ( | ̂(   )). 

Fig. 3. Histograms of the 
posterior probabilities 
 ( | ̂(  )) and  ( | ̂(   )) 
as calculated by the 
nonparametric method. 

 Table 3 shows the results of analyzing the performance 
of the classifier trained with features only from subjects 
within the same GOLD stage. For the Gaussian model, 
increasing severity of COPD in the training data increases 
specificity and lowers sensitivity, as shown in Fig 3. In both 
models, using the healthy group as training data obtained the 
best performance. Using subjects with GOLD Stage 1 as 
training data produced worst performance, possibly due to 
inflammation process often observed at the onset of COPD. 

Training  
Data 

MA MNA Sp. Sens. ACd 

Gaussian 
Healthy 0.97 0.01 0.81 0.85 0.24 
GOLD1 0.99 0.00 0.70 0.89 0.32 
GOLD2 0.96 0.01 0.78 0.87 0.26 
GOLD3 0.93 0.02 0.87 0.78 0.26 
GOLD4 0.94 0.02 0.90 0.77 0.25 

Nonparametric Method 
Healthy 0.88 0.04 0.88 0.85 0.19 
GOLD1 0.96 0.02 0.75 0.91 0.27 
GOLD2 0.83 0.07 0.85 0.81 0.24 
GOLD3 0.83 0.07 0.85 0.85 0.21 
GOLD4 0.87 0.06 0.86 0.85 0.21 

  
Table 3. Computed prior 
probabilities  ( | ̂(  )) and 
 ( | ̂(   )) using each GOLD 
stage as training data. 

Fig. 4. Specificity-sensitivity 
plot of classifier trained with 
only healthy (H) and GOLD 
stages (1-4) subjects. 
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Fig 5. (a) Sample CT slice showing a thin airway (marked with an 
ellipse). (b-c) Probabilistic images computed by the Gaussian 
model and the nonparametric method using their respective 
optimal feature sets. (d) Magnified image of the airway in (a). (e-f) 
Magnified images of the probabilities computed by the Gaussian 
model and the nonparametric method. 
 
 The posterior probability maps obtained for a sample 
CT slice are shown in Fig. 5. The images obtained are noisy, 
although they provide a good indication of the location of 
the airways. Some regions of the lungs affected by 
emphysema as well as vessel borders and lung borders have 
high probability. Interestingly, the probability for a small 
airway such as the one shown in Fig 5 (d) quickly goes to 
zero in the Gaussian model, producing discontinuity, while 
the nonparametric method assigns non-zero values.  

Finally, Fig. 6 shows the normalized values of 
individual features for those voxels with posterior 
probability higher than 0.9 and lower than 0.1. The features 
that best distinguish both groups are those in the optimal 
feature set.  

 
5. DISCUSSION  

 
In this paper, we present an approach to compute the 
posterior probability of airways based on local features 
extracted from CT images of the lungs. Amongst the 
features proposed here is a novel multi-scale wallness 
measure to detect bronchial wall. The posterior probability 
has been computed by fitting to the training data two 
likelihood models: a simple Gaussian distribution and the 
nonparametric kernel density estimation based on kernel 
PCA. 
 The nonparametric method outperformed the Gaussian 
model, but not dramatically. Optimizing the set of features 
significantly improved the specificity of the Gaussian 
model, which was not observed using the nonparametric 
method. This suggests the nonparametric model is more 
resilient towards inclusion of less relevant features.  

Fig. 6. Normalized values of each feature for voxels with high and 
low evaluated posterior probability of being airways. 
 
 Somewhat unexpected was the exclusion of distance to 
wall from the set of optimal features for the nonparametric 
model. It could be due to the noisy wallness measure. Its 
refinement will be the scope for further study. The use of 
more sophisticated machine learning methods, such as 
boosting, may also help us to identify informative features 
in the automatic feature selection. 
 Here, we have used naïve a priori probability using the 
ratio of the number of samples in the class and the total 
number of samples. Results may be improved by leveraging 
an airway atlas as prior probability. This highlights the 
flexibility of our approach to include additional information.  

Analysis by GOLD stages yields an interesting result: 
the optimal set of features serves as a stable airway 
descriptor despite the severity of COPD.  

In conclusion, the computed airway probability map 
integrates valuable information of the feature space and can 
be used as prior for many segmentation schemes that depend 
on cost functions.  
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