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Abstract. In recent years, with the advent of High-resolution Com-
puted Tomography (HRCT), there has been an increased interest for
diagnosing Chronic Obstructive Pulmonary Disease (COPD), which
is commonly presented as emphysema. Since low-attenuation areas in
HRCT images describe different emphysema patterns, the discrimination
problem should focus on the characterization of both local intensities and
global spatial variations. We propose a novel texture-based classification
framework using complex Gabor filters and local binary patterns. We
also analyzed a set of global and local texture descriptors to character-
ize emphysema morphology. The results have shown the effectiveness of
our proposal and that the combination of descriptors provides robust
features that lead to an improvement in the classification rate.
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1 Introduction

COPD is a progressive and irreversible lung condition, which is characterized
by tissue damage. It hinders air from passing through airpaths and causes that
alveolar sacs lose their elastic quality, increasing the risk of death. COPD can
manifest as either emphysema, bronchitis or both; the former is the most com-
mon manifestation that destroys lung parenchyma [1].

Literature recognizes three types of emphysema: i) Paraseptal (PS) or dis-
tal acinar emphysema, which is characterized by destruction of distal airway
structures, alveolar ducts, and alveolar sacs. The process is localized around the
pleura; ii) Panlobular (PL) or panacinar emphysema destroys uniformly the
entire alveolus, it is predominant in the lower half of the lungs; and iii) Cen-
trilobular (CL) or centriacinar emphysema, which is the most common type

J. Ruiz-ShulcloperandG. Sanniti di Baja (Eds.): CIARP 2013, Part II, LNCS 8259, pp. 214–221, 2013.
c⃝ Springer-Verlag Berlin Heidelberg 2013



Advances in Texture Analysis for Emphysema Classification 215

of emphysema. It begins in the respiratory bronchioli and spreads peripherally,
most damage is usually contained to the upper half of the lungs.

Spirometry is the gold standard criterion to establish a diagnosis of emphy-
sema. It measures the volume of air that a patient is able to expel from lungs
after a maximal inspiration. Nevertheless, this method does not allow to discrim-
inate pathological subphenotypes of emphysema. On the other hand, HRCT is a
minimally invasive imaging technique capable of providing both high-contrast
and high-resolution details of lungs and airways; it has shown its potential
for identifying changes in lung parenchyma and abnormalities associated with
emphysema.

Hayhurst et al. [2] showed that Hounsfield Unit (HU) frequency distributions
in patients who had CL differed significantly from patients with Normal Tis-
sue (NT). Low-attenuation areas in HRCT images have been found to represent
macroscopic and microscopic changes due to emphysema. Such areas are deter-
mined using the density mask method, which measures the amount of emphy-
sematous lung by calculating the percentage of voxels lesser than a threshold;
commonly, the threshold lies somewhere between -910 and -980 HU.

Texture-based classification of lung HRCT images may provide new insights
towards the construction of a reliable computer-aided diagnosis system. New
methods include features extracted using local binary patterns [3]. A simpler
alternative based on kernel density estimation of local histograms has been pro-
posed in [4]. A different approach was proposed in [5] where the authors used
meta-data to label lung samples, whereas in [6], the Riesz transform was used
to obtain textural features in interstitial lung abnormalities but it has not been
tested in analysis of emphysema subtypes. However, researchers have analyzed
texture in HRCT images using simple descriptors. In this work, we claim that
the combination of both global and local descriptors will provide robust features
because global characteristics and local information are encode simultaneously.
Thus, an improvement in the classification rate can be attained.

This paper is organized as follows: the datasets are described in Section 2.
In Section 3 we defined a set of global and local descriptors used in the present
study and provided their mathematical foundations. The results are presented
in Section 4. Finally, our work is summarized in Section 5.

2 Material

We used two datasets labeled by experienced pulmonologists: the Bruijne and
Sørensen dataset (BS) was provided by Prof. Dr. Bruijne and Dr. Sørensen [3].
It consists of 168 non-overlapping annotated ROIs of size 61× 61 pixels and be-
long to three types of patterns: NT=59, CL=50, and PS=59; and Brigham and
Women’s Hospital dataset (BWH). This dataset was provided by researchers
from the Brigham and Women’s Hospital using a subset of the COPDGene
study [4]. 1337 ROIs from 267 CT scans were randomly selected; the distribu-
tion per pattern is: NT=370, PS=184, PL=148. BWH includes three subtypes of
CL patterns (mild, moderate, and severe): CL1=170, CL2=287, and CL3=178
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respectively. The size of the samples was chosen to fit the physical extent of
emphysema within the secondary lobule corresponding to 31× 31 pixels.

3 Methods

We propose the combination of Complex Gabor Filters (CGF) and Local Binary
Patters (LBP) for a better characterization of emphysema; the former are global
descriptors, whereas the latter are local descriptors. Additionally, a wide set of
texture descriptors have been analyzed. To assign a given patch to one of several
emphysema patterns, we used a methodology composed of three stages: i) fea-
ture extraction with global and local descriptors; ii) dimensionality reduction
using Kernel-Fisher Discriminant Analysis (KFDA); and iii) classification with
k -Nearest Neighbors (kNN). In the following paragraphs we summarize the main
characteristics of the descriptors used in the current study.

Complex Gabor Filters [7] are defined as the product of Gaussian func-
tions and complex sinusoids. They are band-pass filters that constitute a com-
plete but non-orthogonal basis set and their shape match with psychophysical
properties of receptive fields [8]. They can be divided into two parts: ge (x, y) =

K exp{− 1
2 (

x̃2+γ2ỹ2

α2 )} cos (2πu0x̃), which is an even filter, whereas go (x, y) =

K exp{− 1
2 (

x̃2+γ2ỹ2

α2 )} sin (2πu0x̃) is an odd filter. K represents a normalizing
constant, u0 is the central frequency, (α, γ) are the constants of the Gaussian
envelope along x and y-axes respectively. x̃ = x cos θ−y sin θ, ỹ = x sin θ+y cos θ,
and θ denotes the orientation. Further filtering parameters were tuned by fol-
lowing the design constraints recommended in [9].

We used a bank made of 24 filters distributed in 4 scales (s) and 6 orientations;
for each of them, we computed E(s,θ) = I(x, y)⋆ge(s,θ)(x, y) and O(s,θ) = I(x, y)⋆
go(s,θ)(x, y) where I(x, y) is the given patch and the ⋆ indicates convolution.
Then, we extracted the magnitude coefficients (M(s,θ)(x, y)) as:

M(s,θ)(x, y) =
√
E2

(s,θ)(x, y) +O2
(s,θ)(x, y) (1)

Since M(s,θ)(x, y) are considered as random variables, we extracted the mean
(µ), the standard deviation (σ), the skewness (Υ ), and the kurtosis (Ψ) from them
to characterize the response of any image and build a feature vector, fCGF , as
follows:

fCGF =
[
µ(0,0), σ(0,0), Υ(0,0), Ψ(0,0), . . . ,

µ(s−1,θ−1), σ(s−1,θ−1), Υ(s−1,θ−1), Ψ(s−1,θ−1)

] (2)

Log-Gabor Filters (LGF) [10] are defined in frequency domain as Gaussian
functions shifted from the origin; they have a null DC component and can be split

into radial and angular filters: Ĝ(ρ, θ) = exp{− 1
2 [

log( ρ
u0

)

log(
αρ
u0

)
]2} exp{− 1

2 [
(θ−θ0)

αθ
]2},

where (ρ, θ) represent the polar coordinates, u0 is the central frequency, θ0 is
the orientation angle, αρ and αθ determine the scale and the angular bandwidth
respectively. We applied setting recommendations that appear in [9] and com-
puted the feature vectors, fLGF , by convolving a bank of 24 log-Gabor filters
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distributed in 4 scales and 6 orientations with the input images and then we
followed the procedure presented in Eq. (2).

Sparse Gabor Coding (SGC). Gabor filters provide redundant represen-
tations, which may hamper classification tasks. As proposed first by [11], this
problem may be solved using a greedy algorithm. This approach corresponds to
first choosing a single filter, Φi, that best fits the image, I(x, y), along with a
suitable coefficient ai, such that the single source aiΦi is a good match to the
image: i = arg maxj(⟨

I(x,y)
∥I(x,y)∥ ,

Φj

∥Φj∥ ⟩), where ⟨·, ·⟩ represents the inner product.

The associated coefficient is the scalar projection: ai = ⟨I(x, y), Φi
∥Φi∥2 ⟩. Know-

ing this choice, the image can be decomposed as: I(x, y) = aiΦi + R where R
is the residual image. We repeat this 2-step process on the residual until some
stopping criterion is met. This procedure is known as the matching pursuit al-
gorithm, which has proven to be a good approximation for natural images [12].
Measuring the ratio of extracted energy in the images, 256 edges were on aver-
age enough to extract 90% of the energy of whitened images on all datasets. We
thus used this set of sparse coefficients as the input vector for the classification
framework.

Gray-level Co-occurrence Matrices (GLCM) were proposed by Haral-
ick [13]. They evaluate spatial relationship among gray levels. Each pixel in an
image I(x, y) is assigned to one of Ng gray levels. The GLCM matrix consist of
a set of {Pij |i, j = 1, . . . , Ng} values. Pij represents the number of occurrences
of two pixels with gray levels i and j separated by a distance d in the direc-
tion of the angle θ. The GLCM’s elements are normalized, providing the relative
frequency of occurrence for a pair of gray levels.

The element p (i, j) denotes the probability of finding the pair of levels (i, j)

in the image, which is obtained as: p(i, j) = Pij(
∑Ng

i,j Pij)−1. 10 features were
chosen to capture texture properties: energy, contrast, correlation, homogeneity,
entropy, autocorrelation, dissimilarity, cluster shade, cluster prominence, and
maximum probability. In our study, Ng was set to 8 according previous works
focused on texture analysis [14]. d was set to 1 while four different angle values
were assessed: 0, 45, 90, and 135 degrees. Thus, a total of 40 descriptors (10 sta-
tistical features for each of the four orientations) were obtained for each texture.

Discrete Tchebichef Moments (DTM) [15] are computed by projecting
the image I(x, y) onto the set of Tchebichef polynomial kernels. DTM provides a
unique representation of the image in the spanned Tchebichef space. The moment
Tpq (p, q = 0, 1, . . . , N − 1) of order s = p+ q is defined as:

Tpq =
1

ρ̃(p,N)ρ̃(p,N)

N−1∑

x=0

N−1∑

y=0

t̃p(x)t̃q(y)I(x, y) (3)

where t̃p(x) and t̃q(x) are scaled Tchebichef polynomials and ρ(n,N) is its
squared norm. Tpq quantifies the correlation between the image, I(x, y), and
the kernel t̃p(x)t̃q(y). Hence, this magnitude will be higher for images char-
acterized by repetitive patterns occurring at a similar rate to the kernel. The
following feature evaluates the similarity between the image and the varying
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patterns implemented by s-order Tchebichef kernels: T (s) =
∑

p+q=s |Tpq|, (s =
0, 1, . . . , 2N − 2). The analysis based on DTM yields a feature vector of length
2N − 1 to describe texture attributes.

Local Binary Patterns [16] are based on the idea that textural proper-
ties within homogeneous regions can be mapped into patterns, which represent
micro-features. LBP uses a 3 × 3 square mask called “texture spectrum”. The
values in the square mask are compared with the central pixel, those ones lesser
are labeled with “0” otherwise they are labeled with “1”. The labeled pixels are
multiplied by a fixed weighting function according with their positions to form
a chain. Afterward, the values of the eight pixels are summed to obtain a label:
LBPP,R(gc) =

∑P−1
p=0 s(gp − gc)2p, where {gp|p = 0, . . . , P − 1} are the values of

the neighbors. The comparison function s(x) is defined as a Heaviside function:

s(x) =

{
1 if x ≥ 0
0 if x < 0

Uniform Local Binary Patterns (LBPuni
P,R) [17]. Over 90% of LBP patterns

can be described with few spatial transitions, which are the changes (0/1) in a
pattern chain. Ojala introduced the measure U(LBPP,R(gc)) = |s(gp−1 − gc) −
s(g0−gc)|+

∑P−1
p=1 |s(gp − gc)− s(gp−1 − gc)|, which corresponds to the number

of spatial transitions. So that, the uniform LBP (LBPuni
P,R) can be obtained as:

LBPuni
P,R (gc) =

⎧
⎪⎨

⎪⎩

P−1∑

p=0

s (gp − gc) if U (LBPP,R (gc)) ≤ 2

P + 1 otherwise

(4)

after the process is completed; a labeled image, L (x, y), is generated and the
pixel-wise information is encoded as a histogram, Hi.

3.1 Multi-class Kernel Fisher Discriminant Analysis

It must be considered that the size of a training set should be exponentially in-
creased with the dimensionality of the input space. Since the previous methods
generate high-dimensional feature vectors and a limited dataset is available, we
used KFDA [18], which maps original data into a new feature space prevent-
ing overfitting. Let X1 = {x1

1, x
1
2, . . . , x

1
l1
}, . . . , XC = {xC

1 , x
C
2 , . . . , x

C
lC
} be

feature vectors from C classes and let K(m,n) be the kernel matrix defined

as K(m,n) = k(Xm, Xn) where X =
⋃C

i=1 X
i. We used the Gaussian kernel,

k(x, y) = exp{− 1
2
∥x−y∥2

a2 }, a = 333.

The “between scatter matrix” is defined by P =
∑C

j=1 lj(µj−µ)(µj−µ)T with

µj = 1
lj

∑
∀n∈Xj K(m,n) and µ = 1

l

∑
∀n K(m,n). The “within class scatter

matrix” is defined by Q = KKT −
∑C

j=1 ljµjµT
j ; since Q must be a positive

definite matrix, we used Q = Q + rI to guarantee that Q is positive definite.
Finally, α∗ is built with the C−1 largest eigenvalues ofQ−1P and the projection
can be computed as: y = Kα∗.
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Fig. 1. BS classification rates (Three classes). The first row shows the results using
FDA whereas in the second row, the results using KFDA are shown. Note that in
almost all the cases, the extended methods (Diff), which are built by concatenating
a single descriptor and its corresponding LBPuni

P,R histogram, achieved higher rates.

4 Experiments and Results

Parameter selection is a fundamental step in any classification problem; we used
10-fold cross-validation to estimate global parameters resulting in k = 20 neigh-
bors in the kNN classifier as the best case. Then, we applied leave-one-out cross-
validation to measure Specificity (Sp), Sensitivity (S), and Precision (P). We
carried out a comparison of each method using both Fisher Discriminant Anal-
ysis (FDA) and KFDA, (see Fig. 1 for BS and Fig. 2 for BWH). Since KFDA
generates non-linear boundaries among classes, the classification rates are better
than those achieved with FDA. Furthermore, we compared each method with
its extended version, which is built by concatenating a single descriptor and its
corresponding LBPuni

P,R histogram into a single sequence to represent a mixture
descriptor.

We computed the F1-Score = 2 ∗ P∗S
P+S for each algorithm and measured the

accuracy of the tests. For BS dataset, our proposal, CGF + LBPuni
P,R, achieved

the highest F1-Score with 0.8637. A straightforward comparison with the work
of Bruijne and Sørensen [3] is not possible because they reported a classifica-
tion rate using patches of 31 × 31 pixels as the best case. Here, we used larger
patches, which implies the risk of including different lobes that might have dif-
ferent emphysema and might decrease the classification performance. Using the
BWH dataset, our proposal also achieved the highest F1-Score with 0.6899. Men-
doza et al. [4] reported a F1-Score of 0.6440 using the kernel density estimation
approach.
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Fig. 2. BWH classification rates (Six classes). The first row shows the results using
FDA while in the second row the classification rates using KFDA are shown. The
extended methods, Diff , achieved higher rates than single texture approaches.

5 Conclusions

We proposed a novel approach to quantify emphysema patterns based on global
and local descriptors to form a single sequence that represent any given texture
patch. This approach simultaneously encodes global characteristics with local
information that leads to better classification rates. Additionally, we analyzed six
texture descriptors and compared their performance. Since the size of extended
descriptors increases exponentially, we applied KFDA via the kernel trick to
avoid computing a mapping function. This procedure resulted in an improvement
of the classification rates.
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